首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   69篇
  国内免费   1篇
化学   578篇
晶体学   4篇
力学   21篇
数学   80篇
物理学   169篇
无线电   68篇
  2023年   9篇
  2022年   21篇
  2021年   24篇
  2020年   30篇
  2019年   28篇
  2018年   18篇
  2017年   13篇
  2016年   45篇
  2015年   26篇
  2014年   25篇
  2013年   40篇
  2012年   55篇
  2011年   74篇
  2010年   33篇
  2009年   28篇
  2008年   46篇
  2007年   46篇
  2006年   36篇
  2005年   37篇
  2004年   34篇
  2003年   28篇
  2002年   17篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   16篇
  1996年   9篇
  1995年   7篇
  1994年   17篇
  1993年   8篇
  1992年   7篇
  1991年   12篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1983年   8篇
  1982年   3篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1973年   4篇
  1968年   4篇
  1967年   5篇
  1966年   3篇
  1960年   4篇
  1958年   4篇
排序方式: 共有920条查询结果,搜索用时 0 毫秒
21.
22.
Silk protein products have been used for a wide range of applications. This review focuses on the studies conducted relative to cognitive functions with silk fibroin enzyme hydrolysates (FEH) in humans and animals. All known studies reported in PubMed and Google Scholar have been included. Studies have been conducted on children, high school and college students, adults and seniors, ranging in ages from 7–92 years. Doses of 200–600 mg silk FEH per day for three weeks to 16 weeks have been used. Based on these studies, it can be concluded that silk FEH exhibit beneficial cognitive effects with respect to memory and learning, attention, mental focus, accuracy, memory recall, and overall memory and concentration. These conclusions are supported by studies in rats and mice. Mechanistic studies that have been conducted in animals and cell culture systems are also reviewed. These studies indicate that silk FEH exerts its positive effects on memory and learning by providing neuroprotection via a complex mechanism involving its potent antioxidant and inflammation-inhibiting activities. Acetylcholine (ACh) is secreted by cholinergic neurons, and plays a role in encoding new information. Silk FEH were shown to decrease the levels of the pro-oxidant and pro-inflammatory mediators interlukin-1 (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α), protecting the cholinergic system from oxidative stress, thus enhancing ACh levels in the brain, which is known to promote cognitive functions. In addition, the expression of brain-derived neurotrophic factor (BNDF), which is involved in the survival of neurons, is enhanced, and an increase in the expression of the phosphorylated cAMP response element-binding protein (p-CREB) occurs, which is known to play a positive role in cognitive functions. No adverse effects have been reported in association with the use of silk FEH.  相似文献   
23.
C–H functionalisation reactions offer a sustainable method for molecular construction and diversification. These reactions however remain dominated by precious metal catalysis. While significant interest in iron-catalysed C–H activation reactions has emerged, the isolation, characterisation and mechanistic understanding of these processes remain lacking. Herein the iron-catalysed C(sp2)–H bond hydrogen/deuterium exchange reaction using CD3OD is reported for both heterocycles and, for the first time, alkenes (38 examples). Isolation and characterisation, including by single-crystal X-ray diffraction, of the key iron-aryl and iron-alkenyl C–H metallation intermediates provided evidence for a reversible protonation of the active iron hydride catalyst. Good chemoselectivity was observed for both substrate classes. The developed procedure is orthogonal to previous iron-catalysed H/D exchange methods which used C6D6, D2, or D2O as the deuterium source, and uses only bench-stable reagents, including the iron(ii) pre-catalyst. Further, a new mechanism of iron-hydride formation is reported in which β-hydride elimination from an alcohol generates the iron hydride. The ability to produce, isolate and characterise the organometallic products arising from C–H activation presents a basis for future discovery and development.

The iron-catalysed C(sp2)–H bond H/D exchange reaction using CD3OD is reported for both heterocycles and alkenes. Characterisation of the key C–H metallation intermediates provided evidence for reversible protonation of the iron hydride catalyst.  相似文献   
24.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3)2X2 ( Co-X ; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X , showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.  相似文献   
25.
26.
27.
28.
29.

While quantitative structure-activity relationships attempt to predict the numerical value of the activities, it is found that statistically good predictors do not always do a good job of qualitatively determining the activity. This study shows how Fuzzy classifiers can be used to generate Fuzzy structure-activity relationships which can more accurately determine whether or not a compound will be highly inactive, moderately inactive or active, or highly active. Four examples of these classifiers are presented and applied to a well-studied activity dataset.  相似文献   
30.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号