首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   178篇
  国内免费   174篇
化学   1019篇
晶体学   21篇
力学   70篇
综合类   14篇
数学   283篇
物理学   345篇
无线电   401篇
  2024年   3篇
  2023年   36篇
  2022年   66篇
  2021年   74篇
  2020年   74篇
  2019年   64篇
  2018年   72篇
  2017年   65篇
  2016年   102篇
  2015年   79篇
  2014年   105篇
  2013年   128篇
  2012年   93篇
  2011年   131篇
  2010年   99篇
  2009年   87篇
  2008年   102篇
  2007年   92篇
  2006年   90篇
  2005年   76篇
  2004年   46篇
  2003年   39篇
  2002年   30篇
  2001年   26篇
  2000年   37篇
  1999年   29篇
  1998年   24篇
  1997年   16篇
  1996年   29篇
  1995年   36篇
  1994年   22篇
  1993年   17篇
  1992年   18篇
  1991年   29篇
  1990年   12篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   7篇
  1978年   11篇
  1977年   8篇
  1976年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有2153条查询结果,搜索用时 15 毫秒
91.
Microfluidization, which is a high-pressure homogenization technique, was used to develop highly dispersed cellulose nanocrystal (CNC) reinforced chitosan based nanocomposite films. A three factor central composite design with five levels was designed to systematically optimize the microfluidization process. The three factors were the CNC content, the microfluidization pressure and the number of microfluidization cycles. Response surface methodology was used to obtain relationship between the mechanical properties of the nanocomposite films and the factors. Polynomial equations were generated based on the regression analysis of the factors and the predicted properties of the nanocomposite films were in good agreement with the experimental results. Microfluidization effectively reduced the CNC–chitosan aggregates and improved the mechanical properties of the nanocomposite films. Microscopic analysis of the microfluidized nanocomposite films revealed a 10–15 times reduction in the size of the aggregates compared to the non-microfluidized CNC/chitosan films and an increase in the root mean square surface roughness (Rq).  相似文献   
92.
93.
Ts1 toxin is a protein found in the venom of the Brazilian scorpion Tityus serrulatus. Ts1 binds to the domain II voltage sensor in the voltage‐gated sodium channel Nav and modifies its voltage dependence. In the work reported here, we established an efficient total chemical synthesis of the Ts1 protein using modern chemical ligation methods and demonstrated that it was fully active in modifying the voltage dependence of the rat skeletal muscle voltage‐gated sodium channel rNav1.4 expressed in oocytes. Total synthesis combined with click chemistry was used to label the Ts1 protein molecule with the fluorescent dyes Alexa‐Fluor 488 and Bodipy. Dye‐labeled Ts1 proteins retained their optical properties and bound to and modified the voltage dependence of the sodium channel Nav. Because of the highly specific binding of Ts1 toxin to Nav, successful chemical synthesis and labeling of Ts1 toxin provides an important tool for biophysical studies, histochemical studies, and opto‐pharmacological studies of the Nav protein.  相似文献   
94.
Expanding the number of nucleotides in DNA increases the information density of functional DNA molecules, creating nanoassemblies that cannot be invaded by natural DNA/RNA in complex biological systems. Here, we show how six-letter GACTZP DNA contributes this property in two parts of a nanoassembly: 1) in an aptamer evolved from a six-letter DNA library to selectively bind liver cancer cells; and 2) in a six-letter self-assembling GACTZP nanotrain that carries the drug doxorubicin. The aptamer-nanotrain assembly, charged with doxorubicin, selectively kills liver cancer cells in culture, as the selectivity of the aptamer binding directs doxorubicin into the aptamer-targeted cells. The assembly does not kill untransformed cells that the aptamer does not bind. This architecture, built with an expanded genetic alphabet, is reminiscent of antibodies conjugated to drugs, which presumably act by this mechanism as well, but with the antibody replaced by an aptamer.  相似文献   
95.
Adenosine radicals tagged with a fixed-charge group were generated in the gas phase and structurally characterized by tandem mass spectrometry, deuterium labeling, and UV/Vis action spectroscopy. Experimental results in combination with Born–Oppenheimer molecular dynamics, ab initio, and excited-state calculations led to unambiguous assignment of adenosine radicals as N-7 hydrogen atom adducts. The charge-tagged radicals were found to be electronically equivalent to natural DNA nucleoside radicals.  相似文献   
96.
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.  相似文献   
97.
Adenosine radicals tagged with a fixed‐charge group were generated in the gas phase and structurally characterized by tandem mass spectrometry, deuterium labeling, and UV/Vis action spectroscopy. Experimental results in combination with Born–Oppenheimer molecular dynamics, ab initio, and excited‐state calculations led to unambiguous assignment of adenosine radicals as N‐7 hydrogen atom adducts. The charge‐tagged radicals were found to be electronically equivalent to natural DNA nucleoside radicals.  相似文献   
98.
Shi  S. K.  Kang  R. Q.  Li  J. L.  Bai  Y.  Dang  D. B. 《Russian Journal of Coordination Chemistry》2020,46(7):513-520
Russian Journal of Coordination Chemistry - A new V-centered Keggin polyoxometalate-based inorganic-organic hybrid (HPpz)3[VW12O40] (I) (Ppz = piperazine) has been hydrothermal synthesized and...  相似文献   
99.
Reversed‐phase liquid chromatography coupled with middle chromatogram isolated gel column was employed for the efficient preparative separation of the arylbutanoid‐type phenol [(‐)‐rhododendrin] from Saxifraga tangutica. Universal C18 (XTerra C18) and XCharge C18 columns were compared for (‐)‐rhododendrin fraction analysis and preparation. Although tailing and overloading occurred on the XTerra C18 column, the positively charged reversed‐phase C18 column (XCharge C18) overcame these drawbacks, allowing for favorable separation resolution, even when loading at a on a preparative scale (3.69 mg per injection). The general separation process was as follows. First, 365.0 mg of crude (‐)‐rhododendrin was enriched from 165 g Saxifraga tangutica extract via a middle chromatogram isolated gel column. Second, separation was performed on an XTerra C18 preparative column, from which 73.8 mg of the target fraction was easily obtained. Finally, the 24.0 mg tailing peak of (‐)‐rhododendrin on XTerra C18 column was selectively purified on the XCharge C18 analytical column. These results demonstrate that the tailing nonalkaloid peaks can be effectively used for preparative isolation on XCharge C18 columns.  相似文献   
100.
The applications of the most promising Fe—N–C catalysts are prohibited by their limited intrinsic activities. Manipulating the Fe energy level through anchoring electron‐withdrawing ligands is found effective in boosting the catalytic performance. However, such regulation remains elusive as the ligands are only uncontrollably introduced oweing to their energetically unstable nature. Herein, we report a rational manipulation strategy for introducing axial bonded O to the Fe sites, attained through hexa‐coordinating Fe with oxygen functional groups in the precursor. Moreover, the O modifier is stabilized by forming the Fe?O?Fe bridge bond, with the approximation of two FeN4 sites. The energy level modulation thus created confers the sites with an intrinsic activity that is over 10 times higher than that of the normal FeN4 site. Our finding opens a novel strategy to manage coordination environments at an atomic level for high activity ORR catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号