首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   5篇
  国内免费   1篇
化学   86篇
晶体学   4篇
力学   4篇
数学   20篇
物理学   28篇
无线电   24篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有166条查询结果,搜索用时 343 毫秒
91.
The TeF5 group is significantly underexplored as a highly fluorinated substituent on an organic framework, despite it being a larger congener of the acclaimed SF5 group. In fact, only one aryl‐TeF5 compound (phenyl‐TeF5) has been reported to date, synthesized using XeF2. Our recently developed mild TCICA/KF approach to oxidative fluorination provides an affordable and scalable alternative to XeF2. Using this method, we report a scope of extensively characterized aryl‐TeF5 compounds, along with the first SC‐XRD data on this compound class. The methodology was also extended to the synthesis and structural study of heretofore unknown aryl‐TeF4CF3 compounds. Additionally, preliminary reactivity studies unveiled some inconsistencies with previous literature regarding phenyl‐TeF5. Although our studies conclude that the arene‐based TeF5 (and TeF4CF3) group is not quite as robust as the SF5 group, we find that the TeF5 group is more stable than previously thought, thus opening a door to explore new applications of this motif.  相似文献   
92.
93.
In the constrained minimization method of Gidopoulos and Lathiotakis [N.I. Gidopoulos, N.N. Lathiotakis, J. Chem. Phys. 136, 224109 (2012)], the Hartree exchange and correlation Kohn-Sham potential of a finite N-electron system is replaced by the electrostatic potential of an effective charge density that is everywhere positive and integrates to a charge of N ? 1 electrons. The optimal effective charge density (electron repulsion density, ρrep) and the corresponding optimal effective potential (electron repulsion potential vrep) are obtained by minimizing the electronic total energy in any density functional approximation. The two constraints are sufficient to remove the self-interaction errors from vrep, correcting its asymptotic behavior at large distances from the system. In the present work, we describe, in complete detail, the constrained minimization method, including recent refinements. We also assess its performance in removing the self-interaction errors for three popular density functional approximations, namely LDA, PBE and B3LYP, by comparing the obtained ionization energies to their experimental values for an extended set of molecules. We show that the results of the constrained minimizations are almost independent of the specific approximation with average percentage errors 15%, 14%, 13% for the above DFAs respectively. These errors are substantially smaller than the corresponding errors of the plain (unconstrained) Kohn-Sham calculations at 38%, 39% and 27% respectively. Finally, we showed that this method correctly predicts negative values for the HOMO energies of several anions.  相似文献   
94.
Rate constants for the gas-phase reactions of O3 with ethene, propene, 1-hexene, 1-heptene, styrene, o-, m-, and p-cresol, o- and m-xylene, benzylchloride, acrylonitrile, and trichloroethene have been determined at 296 ± 2 K. The rate constants ranged from <5 × 10?21 cm3 molecule?1 s?1 for m-xylene to 2.16 × 10?17 cm3 molecule?1 s?1 for styrene, with those for ethene, propene, and 1-hexene being in excellent agreement with literature data.  相似文献   
95.
A detailed mechanism is presented for reactions occurring during irradiation of part-per-million concentrations of propene and/or n-butane and oxides of nitrogen in air. Data from an extensive series of well-characterized smog chamber experiments carried out in our 5800-liter evacuable chamber–solar simulator facility designed for providing data suitable for quantitative model validation were used to elucidate several unknown or uncertain kinetic parameters and details of the reaction mechanism. The mechanism was then tested against the data base from the smog chamber runs. In general, most calculated concentration–time profiles agreed with experiments to within the experimental uncertainties. Fits were usually attained to within ~±20% or better for ozone, NO, propene, and n-butane, to within ~±30% or better for NO2, PAN, methyl ethyl ketone, 2-butyl nitrate, butyraldehyde, and (in runs not containing propene) methyl nitrate, to within ?±50% or better for the minor products 1-butyl nitrate and propene oxide, and to within a factor of 2 for methyl nitrate in propene-containing runs. Propionaldehyde was consistently underpredicted in all runs; it is probably a chamber contaminant. For formaldehyde and acetaldehyde, the major products in both systems, fits to within ?±20% were often obtained, yet for a number of experiments, significantly greater discrepancies were observed, probably as a result of experimental and/or analytical problems. The good fits to experimental data were attained only after adjusting several rate constants or rate constant ratios related to uncertainties concerning chamber effects or the chemical mechanism. The largest uncertainty concerns the necessity to include in the mechanism a significant rate of radical input from unknown sources in the smog chamber. Other areas where fundamental kinetic and mechanistic data are most needed before a predictive, detailed propene + n-butane-NOx-air smog model can be completely validated concern other chamber effects, the O3 + propene mechanism, decomposition rates of substituted alkoxy radicals, primary quantum yields for radical production as a function of wavelength for aldehyde and ketone photolyses, and the mechanisms and rates of reactions of peroxy radicals with NO and NO2.  相似文献   
96.
97.
Rate constants for the gas-phase reactions of O3 with the carbonyls acrolein, crotonaldehyde, methacrolein, methylvinylketone, 3-penten-2-one, 2-cyclohexen-1-one, acetaldehyde, and methylglyoxal have been determined at 296 ± 2 K. The rate constants ranged from <6 × 10?21 cm3 molecule?1 s?1 for acetaldehyde to 2.13 × 10?17 cm3 molecule?1 s?1 for 3-penten-2-one. The substituent effects of ? CHO and CH3CO? groups on the rate constants are assessed and discussed, as are implications for the atmospheric chemistry of the natural hydrocarbon isoprene.  相似文献   
98.
A total of 44 different phosphines were tested, in combination with [RuCl(2)(C(6)H(6))](2) and three other Ru(II) precursors, for their ability to form active catalysts for the hydrogenation of CO(2) to formic acid. Half (22) of the ligands formed catalysts of significant activity, and only 6 resulted in very high rates of production of formic acid. These were PMe(3), PPhMe(2), dppm, dppe, and cis- and trans-Ph(2)PCH=CHPPh(2). The in situ catalysts prepared from [RuCl(2)(C(6)H(6))](2) and any of these 6 phosphine ligands were found to be at least as efficient as the isolated catalyst RuCl(O(2)CMe)(PMe(3))(4). There was no correlation between the basicity of monophosphines (PR(3)) and the activity of the catalysts formed from them. However, weakly basic diphosphines formed highly active catalysts only if their bite angles were small, while more strongly basic diphosphines had the opposite trend. In situ (31)P NMR spectroscopy showed that trans-Ru(H)(2)(dppm)(2), trans-RuCl(2)(dppm)(2), trans-RuHCl(dppm)(2), cis-Ru(H)(O(2)CH)(dppm)(2), and cis-Ru(O(2)CH)(2)(dppm)(2) are produced as the major metal-containing species in reactions of dppm with [RuCl(2)(C(6)H(6))](2) under catalytic conditions at 50 degrees C.  相似文献   
99.
In a framework describing manifestly covariant relativistic evolution using a scalar time , consistency demands that -dependent fields be used. In recent work by the authors, general features of a classical parametrized theory of gravitation, paralleling general relativity where possible, were outlined. The existence of a preferred time coordinate changes the theory significantly. In particular, the Hamiltonian constraint for is removed From the Euler-Lagrange equations. Instead of the 5-dimensional stress-energy tensor, a tensor comprised of 4-momentum density mid flux density only serves as the source. Building on that foundation, in this paper we develop a linear approximate theory of parametrized gravitation in the spirit of the flat spacetime approach to general relativity. Using a modified form of Kraichnan's flat spacetime derivation of general relativity, we extend the linear theory to a family of nonlinear theories in which the flat metric and the gravitational field coalesce into a single effective curved metric.  相似文献   
100.
Rate constants for the gas-phase reactions of O3 with a series of cycloalkenes and with cis-2-butene have been determined at 297 ± 1 K. The rate constants obtained were (in units of 10?16 cm3/molecule·s): cis-2-butene, 1.38 ± 0.16; cyclopentene, 2.75 ± 0.33; cyclohexene, 1.04 ± 0.14; cycloheptene, 3.19 ± 0.36; 1,3-cyclohexadiene, 19.7 ± 2.8; 1,4-cyclohexadiene, 0.639 ± 0.074; bicyclo[2.2.1]-2-heptene, 21.4 ± 3.5; bicyclo[2.2.1]-2,5-heptadiene, 46.8 ± 12.9; and bicyclo[2.2.2]-2-octene, 0.728 ± 0.090. These data for cis-2-butene, cyclopentene, and cyclohexene are compared with previous literature data, and the effects of ring strain on the rate constants are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号