首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86685篇
  免费   15671篇
  国内免费   19364篇
化学   35646篇
晶体学   2084篇
力学   3739篇
综合类   1821篇
数学   7732篇
物理学   24010篇
无线电   46688篇
  2024年   502篇
  2023年   1427篇
  2022年   3318篇
  2021年   3239篇
  2020年   2822篇
  2019年   2627篇
  2018年   2622篇
  2017年   3795篇
  2016年   2909篇
  2015年   4296篇
  2014年   5367篇
  2013年   6476篇
  2012年   6861篇
  2011年   7159篇
  2010年   7288篇
  2009年   7623篇
  2008年   7920篇
  2007年   7697篇
  2006年   7229篇
  2005年   6112篇
  2004年   4791篇
  2003年   3290篇
  2002年   2952篇
  2001年   3011篇
  2000年   3121篇
  1999年   1496篇
  1998年   730篇
  1997年   526篇
  1996年   485篇
  1995年   474篇
  1994年   431篇
  1993年   468篇
  1992年   396篇
  1991年   284篇
  1990年   297篇
  1989年   295篇
  1988年   197篇
  1987年   194篇
  1986年   145篇
  1985年   121篇
  1984年   138篇
  1983年   91篇
  1982年   83篇
  1981年   93篇
  1980年   64篇
  1979年   81篇
  1978年   26篇
  1977年   21篇
  1965年   19篇
  1959年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
811.
磷酸酯类反应性物质是乙酰胆碱酯酶不可逆抑制剂。本文应用概念密度泛函理论(CDFT),采用四组条件(B3LYP/6-311++G(2d, 3p)/gas,B3LYP/6-311++G(2d, 3p)/CPCM/water,MP2/6-311++G(2d, 3p)/gas,MP2/6-311++ G(2d, 3p)/CPCM/water),对20多个磷酸酯反应性物质进行反应性描述指数计算,包括分子的化学势μ,绝对硬度η、亲电性指数ω、分子的前线轨道能量等分子整体描述参数,以及原子福井函数、自然键轨道(NBO)电荷、Wiberg键级、NBO键级等分子局域描述参数。通过对反应性描述指数以及定量构性关系(QSPR)方程预测结果的比较分析,得出结论:大多数化合物亲电进攻的反应中心发生在磷原子上;磷酸酯类化合物侧链乙胺基叔氮的质子化,将显著增强反应中心磷原子的亲电进攻能力;B3LYP/6-311++G(2d, 3p)/gas为最合理的计算条件;应用反应性描述指数建立的QSPR模型明显优于常规的2D-QSPR模型,能够用于乙酰胆碱酯酶不可逆抑制剂的精确毒性预测。  相似文献   
812.
非富勒烯太阳能电池目前已经成为有机太阳能电池的研究热点,大量的共轭电子受体分子被开发,并成功应用到高性能光伏器件中。共轭分子作为非富勒烯电子受体,需要综合考虑吸收、能级、电子传输以及结晶性等,其中宽吸收光谱可以提高对太阳光谱的利用,是分子设计中重要因素之一。本工作中,我们设计一种新型电子受体分子,以卟啉为核、萘酰亚胺为端基以及炔为桥连基团。这种新型分子具有近红外的吸收光谱以及合适的能级。将一种具有吸收互补的共轭聚合物为电子给体,星型分子为电子受体应用到电池的活性层中,我们获得了1.8%的能量转换效率,电池的光谱响应为300–900 nm。实验结果证明了这种以卟啉为核的分子设计在实现近红外吸收的电子受体方面具有重要应用前景。  相似文献   
813.
正石墨炔是一种新型碳的同素异形体,是由sp和sp~2两种杂化形式的碳原子组成的二维层状材料~1。具有中国自主知识产权的石墨炔自2010年被首次成功合成以来,吸引了全世界来自化学、物理、材料、生物和电子等学科的科学家对其进行探索~2。石墨炔独特的纳米级孔隙、二维层状共轭骨架结构及半导体性质等特性,使之在能源、电化  相似文献   
814.
基于卟啉为荧光发色团,以2,4-二硝基苯磺酰氯为识别部分,设计并合成了一种具有较高选择性、高灵敏度的近红外苯硫酚荧光探针,其结构经1H NMR, IR和HR-MS(ESI)表征。并研究了其荧光性能。结果表明:该探针可快速(90 s)、高选择性地检测苯硫酚,在5×10-6~13×10-6mol·L-1呈良好的线性关系,检出限为61 nm。  相似文献   
815.
阐述了高水平学术型硕士研究生培养与本科科研体验衔接的基本情况,以化学专业为例,就学术型硕士培养与本科创新性科研实践的衔接模式进行了详细的剖析,指出2者的衔接有助于高层次、高科研水平与高创新能力的硕士研究生培养。  相似文献   
816.
用复合电沉积技术制备了Ag@AgBr/CNT/Ni表面等离子体薄膜催化剂,以扫描电镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman Spectra)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶体结构、化学组成和光谱特性进行了表征,在可见光照射下,用罗丹明B(RhB)作为模拟污染物对薄膜的光催化性质和稳定性进行测定,采用测定薄膜电化学阻抗谱(EIS)和向反应系统中加入活性物种捕获剂的方法对薄膜光催化机制进行探索。结果表明:最优工艺下制备的Ag@AgBr/CNT/Ni薄膜是由少量碳纳米管(CNT)和表面沉积纳米Ag粒子的AgBr晶体构成的复合薄膜。薄膜具有突出的表面等离子体共振效应、优异的光催化活性和良好的催化稳定性。光催化罗丹明B 20 min,Ag@AgBr/CNT/Ni薄膜的降解率是Ag@AgBr/Ni薄膜的1.32倍,是P25 TiO_2/ITO多孔薄膜的21.6倍。在保持光催化性能基本不变的前提下可循环使用5次。CNT的存在使薄膜电荷传导性能和光催化还原溶解氧的性能大幅增加,是所制薄膜相对于Ag@AgBr/Ni薄膜光催化性能提高的主要原因。提出了薄膜光催化罗丹明B的反应机理。  相似文献   
817.
李鹏  李智芳  耿翠  康燕  张超  杨长龙 《无机化学学报》2018,34(12):2205-2210
采用浸渍法制备了不同负载量Mo掺杂Ce/GE催化剂,对其脱硝性能进行了测试,初步探明了Mo掺杂Ce/GE催化剂促进SCR活性增强的内在机制。结果表明,Mo的添加使nCe3+/(nCe3++nCe4+)比率增加、表面吸附氧(Oβ)含量增加及催化剂酸性位点增加,从而提高催化剂的脱硝活性。与5Ce/GE和5Mo/GE相比,5Ce-5Mo/GE催化剂脱硝性能更加优异。当Mo负载量为5%时,催化剂脱硝活性最好,在250℃时NOx转化率达到了99%。此外,5Ce-5Mo/GE催化剂具有较好的抗硫性能。  相似文献   
818.
以1-(4-三氟甲基苯基)异喹啉(tfmpiq)为主配体,二(二(4-三氟甲基苯基)膦酰)胺(tfmtpip)为辅助配体,成功合成了Ir髥配合物Ir(tfmpiq)2(tfmtpip),并得到了配合物的晶体结构。配合物Ir(tfmpiq)2(tfmtpip)的分解温度为373℃,具有良好的热稳定性。Ir(tfmpiq)2(tfmtpip)的发射光谱主要是MLCT发射,峰位置为613 nm,量子效率为3.7%,HOMO和LUMO轨道能级分别为-5.62和-3.54 e V。基于Ir(tfmpiq)2(tfmtpip)的器件ITO/TAPC(40 nm)/Ir(tfmpiq)2(tfmtpip)(x%)∶mCP(20 nm)/TmPyPB(40 nm)/LiF(1 nm)/Al(100 nm),当掺杂浓度为4%(w/w)时,器件达到最大功率效率和电流效率分别为5.73 lm·W-1和7.13 cd·A-1,而且器件在12.8 V的驱动电压下达到亮度10 542 cd·m-2。  相似文献   
819.
以气相法白炭黑(FS)为Si前驱体,通过镁热还原工艺和对获得的NPs-Si进行SiOx和C复合包覆,制备出NPs-Si@SiOx@C纳米复合结构,将其用作锂电池负极进行电化学性能测试。研究结果表明:镁热还原过程分两步进行,即SiO_2与Mg先生成Mg2Si中间相,Mg2Si继续与SiO_2反应生成Si的反应路径;根据此规律镁热还原气相法白炭黑的Si转化率达87.9%。电化学性能测试中NPs-Si@SiOx@C负极在2.0 A·g-1的电流密度下有1 300 mAh·g-1的容量平台,1 000次循环后的放电比容量为964.2mAh·g-1,容量保持率达75%。  相似文献   
820.
采用高温共沉淀法制备锰基菱方相的普鲁士白正极材料,研究合成温度对产物微结构和电化学性能的影响。研究发现,随着合成温度的提高,产物的结晶度、颗粒尺寸和嵌钠容量明显提高。当合成温度为90℃时,产物在15 mA·g-1下首次充放电容量分别达到142和139 mAh·g-1。在30和50 mA·g-1分别循环300和600次时,容量仍保持在111和89 mAh·g-1。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号