首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   65篇
  国内免费   1篇
化学   512篇
晶体学   3篇
力学   13篇
数学   88篇
物理学   87篇
无线电   56篇
  2023年   16篇
  2022年   12篇
  2021年   18篇
  2020年   35篇
  2019年   32篇
  2018年   17篇
  2017年   14篇
  2016年   31篇
  2015年   30篇
  2014年   37篇
  2013年   34篇
  2012年   67篇
  2011年   68篇
  2010年   30篇
  2009年   23篇
  2008年   37篇
  2007年   30篇
  2006年   34篇
  2005年   38篇
  2004年   27篇
  2003年   18篇
  2002年   15篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1970年   2篇
  1960年   5篇
  1929年   2篇
  1928年   2篇
  1875年   1篇
排序方式: 共有759条查询结果,搜索用时 18 毫秒
31.
Toward developing a micro HPLC cartridge, we have recently built a high-pressure electroosmotic pump (EOP). However, we do not recommend people to use this pump to deliver an organic solvent directly, because it often makes the pump rate unstable. We have experimented several approaches to address this issue, but none of them are satisfactory. Here, we develop an innovative approach to address this issue. We first create an abruption (a dead-volume) within a fluid conduit. We then utilize an EOP to withdraw, via a selection valve, a train of eluent solutions having decreasing eluting power into the fluid conduit. When these solutions are further aspirated through the dead-volume, these solutions are partially mixed, smoothening concentration transitions between two adjacent eluent solutions. As these solutions are pushed back, through the dead-volume again, a smooth gradient profile is formed. In this work, we characterize this scheme for gradient formation, and we incorporate this approach with a high-pressure EOP, a nanoliter injection valve, and a capillary column, yielding a micro HPLC system. We then couple this micro HPLC with an electrospray ionization – mass spectrometer for peptide and protein separations and identifications.  相似文献   
32.
33.
Allostatic load (AL) is a complex clinical construct, providing a unique window into the cumulative impact of stress. However, due to its inherent complexity, AL presents two major measurement challenges to conventional statistical modeling (the field's dominant methodology): it is comprised of a complex causal network of bioallostatic systems, represented by an even larger set of dynamic biomarkers; and, it is situated within a web of antecedent socioecological systems, linking AL to differences in health outcomes and disparities. To address these challenges, we employed case‐based computational modeling (CBM), which allowed us to make four advances: (1) we developed a multisystem, 7‐factor (20 biomarker) model of AL's network of allostatic systems; (2) used it to create a catalog of nine different clinical AL profiles (causal pathways); (3) linked each clinical profile to a typology of 23 health outcomes; and (4) explored our results (post hoc) as a function of gender, a key socioecological factor. In terms of highlights, (a) the Healthy clinical profile had few health risks; (b) the pro‐inflammatory profile linked to high blood pressure and diabetes; (c) Low Stress Hormones linked to heart disease, TIA/Stroke, diabetes, and circulation problems; and (d) high stress hormones linked to heart disease and high blood pressure. Post hoc analyses also found that males were overrepresented on the High Blood Pressure (61.2%), Metabolic Syndrome (63.2%), High Stress Hormones (66.4%), and High Blood Sugar (57.1%); while females were overrepresented on the Healthy (81.9%), Low Stress Hormones (66.3%), and Low Stress Antagonists (stress buffers) (95.4%) profiles. © 2015 Wiley Periodicals, Inc. Complexity 21: 291–306, 2016  相似文献   
34.
35.
Abstract

Poly(benzo[1,2-b:4,5-b′]dithiophene-4,8-diyl vinylene) (1) has been prepared by the pyrolysis of the precursor polymer 2 and studied. Quantum mechanical calculations on the aromatic and quinoid monomers, oligomers and polymers indicate that 1 is a planar aromatic polymer.  相似文献   
36.
Abstract

The immobilization of the dinuclear platinum(II) sulfido complex [Pt2(μ-S)2 (PPh3)4] on solid supports has been investigated. Reaction with haloalkyl functionalized polymers [Merrifield's resin (chloromethylated polystyrene), chloropropyl silica, chloropropyl controlled pore glass, and bromopropyl polysiloxane] gives complexes immobilized through alkylation of one of the sulfide ligands, forming a μ-thiolate ligand acting as an anchor to the polymer support, akin to well-established reactions of [Pt2(μ-S)2(PPh3)4] with molecular alkylating agents. The model complex [Pt2(μ-S)(μ-SCH2SiMe3)(PPh3)4]PF6 was prepared as the first molecular silicon-containing derivative of [Pt2(μ-S)2(PPh3)4] and was fully characterized by NMR spectroscopy, electrospray ionization-mass spectrometry, and single-crystal X-ray diffraction. Immobilization of [Pt2(μ-S)2(PPh3)4] by phosphine exchange reactions was also achieved using commercial polystyrene-grafted triphenylphosphine or a new immobilized phosphine [derived by sequential functionalization of Merrifield's resin with a polyether amine and then Ph2PCH2OH].  相似文献   
37.
A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution.  相似文献   
38.
d-Kynurenine (d-KYN), a metabolite of d-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of d-KYN in biological tissues, we developed a novel assay based on the conversion of d-KYN to KYNA by purified d-amino acid oxidase (d-AAO). Samples were incubated with d-AAO under optimal conditions for measuring d-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for d-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other d-amino acids, including d-serine and d-aspartate, were present in the incubation mixture at 50-fold higher concentrations than d-KYN. Using this new method, d-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with d-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for d-KYN measurement will be instrumental for evaluating whether d-KYN should be considered for a role in physiology and pathology.  相似文献   
39.
Herein, we report new reactivity of the conducting polymer, poly-(3,4-ethylenedioxy thiophene) (PEDOT), where PEDOT mediates a Ritter reaction between alcohols and acetonitrile. The yields were variable and in most cases competitive with results obtained using sulfuric acid. Attempts at a stoichiometric reaction between benzonitrile and diphenylmethanol are also reported herein. Finally, described here are preliminary mechanistic studies that suggest PEDOT is behaving as an alcohol-selective or specific Lewis acid.

Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for full experimental and spectral details.  相似文献   
40.
Isoflavonoids are a class of organic compounds that act primarily as antioxidants. They are produced almost exclusively by various members of the bean family including soybeans, tofu, peanuts, chick peas, and alfalfa. The antioxidant characteristics that isoflavonoids exhibit help hinder the progression of certain cancers, primarily breast, prostate, and colon cancer. We have developed a three-five step synthesis for obtaining a suite of isoflavonoid derivatives. The synthesis involves an enamine formation, a ring closure and halogenation, a Suzuki coupling, and finally a global deprotection to obtain the respective isoflavonoid derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号