首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   4篇
化学   85篇
力学   1篇
物理学   29篇
无线电   60篇
  2022年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   15篇
  2006年   6篇
  2005年   9篇
  2004年   4篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
31.
A galactosaminoglycan moiety was obtained from an antitumor polysaccharide fraction (SN-C) isolated from Cordyceps ophioglossoides culture. SN-C was subjected to sonication, then a protein-bound galactosaminoglycan (CO-N) was isolated specifically by precipitation with 10% ammonium hydroxide. When given intraperitoneally to mice, CO-N inhibited the proliferation of sarcoma 180 cells inoculated into the peritoneal cavity and exhibited a marked life-prolonging effect against ascitic tumors such as Ehrlich carcinoma and IMC carcinoma. CO-N also showed an inhibitory effect against solid Ehrlich carcinoma when given intratumorally and significantly inhibited the growth of a syngeneic solid tumor (MM46 mammary carcinoma) upon intravenous administration at a low dose. CO-N showed a cytocidal effect against cultured cells of IMC and P388D1 in vitro. Flow cytometric analysis demonstrated that fluorescein isothiocyanate-CO-N binds to the surface of Ehrlich cells.  相似文献   
32.
By using an optical system simulator, we investigated the tunable delay-line with an optical SSB modulator and an optical fiber loop, where the delay can be controlled by the electric signal fed to the modulator.  相似文献   
33.
We have previously demonstrated that liquid chromatography/mass spectrometry equipped with a graphitized carbon column (GCC-LC/MS) is useful for the structural analysis of carbohydrates in a glycoprotein. Here, we studied the monosaccharide composition analysis and quantitative oligosaccharide profiling by GCC-LC/MS. Monosaccharides were labeled with 2-aminopyridine and then separated and monitored by GCC-LC/MS in the selective ion mode. The use of tetradeuterium-labeled pyridylamino (d4-PA) monosaccharides as internal standards, which were prepared by the tagging of standard monosaccharides with hexadeuterium-labeled 2-aminopyridine (d6-AP), afforded a good linearity and reproducibility in ESIMS analysis. This method was successfully applied to the monosaccharide composition analysis of model glycoproteins, fetuin, and erythropoietin. For quantitative oligosaccharide profiling, oligosaccharides released from an analyte and a standard glycoprotein were tagged with d0- and d6-AP, respectively, and an equal amount of d0- and d4-PA oligosaccharides were coinjected into GCC-LC/MS. In this procedure, the oligosaccharides that existed in either analyte or a standard glycoprotein appeared as single ions, and the oligosaccharides that existed in both analyte and a standard glycoprotein were detected as paired ions. The relative amount of analyte oligosaccharides could be determined on the basis of the analyte/internal standard ion-pair intensity ratio. The quantitative oligosaccharide profiling enabled us to make a quantitative and qualitative comparison of glycosylation between the analyte and standard glycoproteins. The isotope tag method can be applicable for quality control and comparability assessment of glycoprotein products as well as the analysis of glycan alteration in some diseases.  相似文献   
34.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   
35.
Natural lipases typically recognize enantiomers of alcohols based on the size differences of substituents near the carbinol moiety and selectively react with the R enantiomers of secondary alcohols. Therefore, lipase-catalyzed dynamic kinetic resolution (DKR) of racemic secondary alcohols produces only R enantiomers. We report herein a method for obtaining S enantiomers by DKR of secondary 3-(trialkylsilyl)propargyl alcohols by using a well-known R-selective Pseudomonas fluorescens lipase in combination with a racemization catalyst VMPS4, in which the silyl group reverses the size relationship of substituents near the carbinol moiety. We have already reported R-selective DKR of the corresponding propargyl alcohols without substituents on the ethynyl terminal carbon, and the presence of an easily removable silyl group has enabled us to produce both enantiomers of propargyl alcohols in high chemical yields and with high enantiomeric excess. In addition, immobilization of the lipase on Celite was found to be important for achieving a high efficiency of the DKR.  相似文献   
36.
We have demonstrated efficient frequency doubling of high-energy fundamental Nd:YAG laser pulse energy of the multi-joule (J) level at a high repetition rate using high optical-quality top-seeded solution growth CsB3O5(TSSG-CBO) crystal for the first time. Second-harmonic (532 nm) generation (SHG) output energy of 1.2 J at 10 Hz is obtained with a conversion efficiency of 60%. This result has been obtained at the multi-J level by the growth of high optical-quality TSSG-CBO crystal with the large effective nonlinear coefficient and high damage threshold. These results indicate that TSSG-CBO is a good candidate material for high-energy SHG of Nd-doped lasers at the several J level or more with high repetition rate.  相似文献   
37.
A rhodium complex catalyzed the addition of aryl- and alkenyl-stannanes to activated aldimines under mild and neutral conditions, affording the corresponding amines in good yields.  相似文献   
38.
We demonstrate the use of an optical equalizer to allow 42.7-Gbaud (85.4-Gb/s) return-to-zero differential quadrature phase-shift keyed signals to better tolerate the narrow optical filtering required in high-spectral-efficiency systems. The equalizer passbands are repetitive, enabling the equalization of multiple channels.  相似文献   
39.
Photosensitized DNA damage participates in solar-UV carcinogenesis, photogenotoxicity and phototoxicity. A chemoprevention of photosensitized DNA damage is one of the most important methods for the above phototoxic effects. In this study, the chemopreventive action of xanthone (XAN) derivatives (bellidifolin [BEL], gentiacaulein [GEN], norswertianin [NOR] and swerchirin [SWE]) on DNA damage photosensitized by riboflavin was demonstrated using [32P]-5'-end-labeled DNA fragments obtained from genes relevant to human cancer. GEN and NOR effectively inhibited the formation of piperidine-labile products at consecutive G residues by photoexcited riboflavin, whereas BEL and SWE did not show significant inhibition of DNA damage. The four XAN derivatives decrease the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), an oxidative product of G, by photoexcited riboflavin. The preventive action for the 8-oxodGuo formation of these XAN derivatives increased in the following order: GEN>NOR>BEL>SWE. A fluorescence spectroscopic study and ab initio molecular orbital calculations suggested that the prevention of DNA photodamage is because of the quenching of the triplet excited state of riboflavin by XAN derivatives through electron transfer. This chemoprevention is based on neither antioxidation nor a physical sunscreen effect; rather, it is based on the quenching of a photosensitizer. In conclusion, XAN derivatives, especially GEN, may act as novel chemopreventive agents by the quenching mechanism of an excited photosensitizer.  相似文献   
40.
An optoelectronic oscillator that employs a reciprocating optical modulator is demonstrated. By giving positive optoelectronic feedback to the modulator, the reciprocating modulation in the modulator effectively multiplies the fundamental oscillation frequency by several times. A 52.8 GHz millimetre-wave signal is generated by self-oscillation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号