首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   49篇
  国内免费   5篇
化学   586篇
晶体学   6篇
力学   36篇
数学   79篇
物理学   209篇
无线电   196篇
  2024年   6篇
  2023年   8篇
  2022年   57篇
  2021年   41篇
  2020年   32篇
  2019年   22篇
  2018年   35篇
  2017年   31篇
  2016年   54篇
  2015年   54篇
  2014年   42篇
  2013年   81篇
  2012年   60篇
  2011年   69篇
  2010年   36篇
  2009年   46篇
  2008年   38篇
  2007年   35篇
  2006年   29篇
  2005年   23篇
  2004年   19篇
  2003年   28篇
  2002年   18篇
  2001年   16篇
  2000年   18篇
  1999年   5篇
  1998年   10篇
  1997年   4篇
  1996年   7篇
  1995年   12篇
  1994年   6篇
  1993年   19篇
  1992年   13篇
  1991年   17篇
  1990年   20篇
  1989年   12篇
  1988年   15篇
  1987年   14篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1979年   4篇
  1977年   3篇
  1976年   5篇
  1975年   5篇
  1973年   3篇
  1970年   3篇
  1969年   2篇
排序方式: 共有1112条查询结果,搜索用时 17 毫秒
61.
The nitrosoarenes ArNO (Ar = C6H5, 2-MeC6H4, 2,4,6- Me3C6H2 and C6F5) have been condensed with 4-(dichloroamino)- tetrafluoropyridine to provide the azoxy-compounds pyFNN+(N-)Ar (pyF = 2,3,5,6-tetrafluoro-4-pyridyl); de-oxygenation of the first three with triphenylphosphine or triethyl phosphite gave the corresponding azo-compounds, and the reverse reaction was achieved in the case of pyFNNC6H2Me3-2,4,6 using peroxytrifluoroacetic acid. Thermolysis of 4-azidotetrafluoropyridine in the presence of pentafluoronitrosobenzene provided the perfluorinated azoxy-compound pyFNN+(O-)C6F5. X-Ray methods have been used to determine the molecular geometry of pyFNN+(O-)C6H2Me3-2,4,6.  相似文献   
62.
Cost-effective separation of oil and immiscible organic contaminants from water has become an urgent challenge to protect aquatic and human life from devastating effects. Therefore, it has become imperative to develop super-selective materials for efficiently separating oil from water. In this work, a superhydrophobic surface has been formed that consists of a silane@polystyrene-coated polypropylene fibrous network (silane@PS-PPF) for efficient separation of accidentally spilled oil from water. The superhydrophobic PPFs were designed by a simple, cost-effective two-step process that includes photochemically controlled polymerization of styrene and subsequent dip coating in octadecyltrichlorosilane solution. The hydrophobic surface (CA=129°±4°) of the PS coated PPF after treating with silane was turned into a superhydrophobic body (CA=161°±2°). The achieved silane@PS-PPF fibrous network selectively allowed the fast permeation of the oils and non-polar organic liquids by altogether rejecting water during operation. The separation efficiency for various oils from the contaminated water was 96 to 99%, with a high flux in the range of 7606±312 L m−2h−1 to 9870±151 L m−2h−1. Apart from being used as a filter, the silane@PS-PPF was also used as an oil absorber and has shown an absorption capacity in the range of 1185 to 1535% for various oils. We anticipate that the developed silane@PS-PPF, due to its facile synthetic route, cost-effectiveness, and high performance, can be effectively used in oily wastewater treatment and clean-up of large oil spills from water.  相似文献   
63.
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.  相似文献   
64.
Peptides attached to a cysteine hydrazide ‘transporter module’ are transported selectively in either direction between two chemically similar sites on a molecular platform, enabled by the discovery of new operating methods for a molecular transporter that functions through ratcheting. Substrate repositioning is achieved using a small-molecule robotic arm controlled by a protonation-mediated rotary switch and attachment/release dynamic covalent chemistry. A polar solvent mixtures were found to favour Z to E isomerization of the doubly-protonated switch, transporting cargo in one direction (arbitrarily defined as ‘forward’) in up to 85% yield, while polar solvent mixtures were unexpectedly found to favour E to Z isomerization enabling transport in the reverse (‘backward’) direction in >98% yield. Transport of the substrates proceeded in a matter of hours (compared to 6 days even for simple cargoes with the original system) without the peptides at any time dissociating from the machine nor exchanging with others in the bulk. Under the new operating conditions, key intermediates of the switch are sufficiently stabilized within the macrocycle formed between switch, arm, substrate and platform that they can be identified and structurally characterized by 1H NMR. The size of the peptide cargo has no significant effect on the rate or efficiency of transport in either direction. The new operating conditions allow detailed physical organic chemistry of the ratcheted transport mechanism to be uncovered, improve efficiency, and enable the transport of more complex cargoes than was previously possible.

Peptides are transported in either direction between chemically similar sites on a molecular platform, substrate repositioning is achieved using a cysteine hydrazide transporter module and a small-molecule robotic arm controlled by a rotary switch.  相似文献   
65.
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.  相似文献   
66.
The determination of two imidazoline derivatives [oxymetazoline HCl (OXY) and xylometazoline HCl (XYLO)] was described using different potentiometric platforms. The first electrode type was constructed using tetraphenyl borate (TPB) as anionic exchanger with β-cyclodextrins (β-CD) as ionophore forming oxymetazoline-tetraphenyl borate (OXY-TPB) and xylometazoline-tetraphenyl borate (XYLO-TPB), respectively. The second electrode type was prepared by modification of the first type by conjugation with magnetic iron oxide nanoparticles (MNP) forming (OXY-MNP) and (XYLO-MNP). The synthesized electrodes were fully characterized. The effect of magnetic nano-sized particles as a highly dispersible material with β-CDs on the electrode characteristics was investigated and compared against the classical electrodes. The response time, working pH range and selectivity coefficients were studied. The functionalized nano-electrodes (OXY-MNP and (XYLO-MNP) were found to be more sensitive than the classical electrodes with linearity ranges (1×10−6–1×10−2 M). The functionalized nano-electrodes were successfully applied for the in-line analysis of OXY and XYLO in pharmaceutical dosage forms and spiked rabbit aqueous humor samples with no prior extraction of treatment. This suggests the future use of these electrodes in clinical studies of both drugs of interest.  相似文献   
67.
A novel synthesis of thiazolo[2,3-b]quinazolines 4(a–e), pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines {5(a–e), 6(a–e), and 7(a–e)}, pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines 8(a–e), and benzo[4,5]thiazolo[2,3-b]quinazoloine9(a–e) derivatives starting from 2-(Bis-methylsulfanyl-methylene)-5,5-dimethyl-cyclohexane-1,3-dione 2 as efficient α,α dioxoketen dithioacetal is reported and the synthetic approaches of these types of compounds will provide an innovative molecular framework to the designing of new active heterocyclic compounds. In our study, we also present optimization of the synthetic method along with a biological evaluation of these newly synthesized compounds as antioxidants and antibacterial agents against the bacterial strains, like S. aureus, E. coli, and P. aeruginosa. Among all the evaluated compounds, it was found that some showed significant antioxidant activity at 10 μg/mL while the others exhibited better antibacterial activity at 100 μg/mL. The results of this study showed that compound 6(c) possessed remarkable antibacterial activity, whereas compound 9(c) exhibited the highest efficacy as an antioxidant. The structures of the new synthetic compounds were elucidated by elemental analysis, IR, 1H-NMR, and 13C-NMR.  相似文献   
68.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   
69.
Five new C2-symmetric chiral ligands of 2,5-bis(imidazolinyl)thiophene (L1–L3) and 2,5-bis(oxazolinyl)thiophene (L4 and L5) were synthesized from thiophene-2,5-dicarboxylic acid (1) with enantiopure amino alcohols (4a–c) in excellent optical purity and chemical yield. The utility of these new chiral ligands for Friedel–Crafts asymmetric alkylation was explored. Subsequently, the optimized tridentate ligand L5 and Cu(OTf)2 catalyst (15 mol%) in toluene for 48 h promoted Friedel–Crafts asymmetric alkylation in moderate to good yields (up to 76%) and with good enantioselectivity (up to 81% ee). The bis(oxazolinyl)thiophene ligands were more potent than bis(imidazolinyl)thiophene analogues for the asymmetric induction of the Friedel–Crafts asymmetric alkylation.  相似文献   
70.
The reactions between strontium and iron nitrates have been studied in an open atmosphere system using three different molar ratios, 1:1 (I), 1:2 (II) and 2:1 (III) at different temperatures as pointed out from the DTA data. The reaction mechanism was discussed based on the chemical composition characterized by means of thermal analysis, X‐ray diffraction patterns, infrared spectra and magnetic susceptibility. It was found that the reaction products depend on both temperature of reaction and the ratio between reactants. The reaction products were found to be composed of a variety of iron compounds that possess different valences: SrFeO2.86, SrFeO2.97, SrFe2O4, SrFe12O19, Sr2Fe2O5 and Sr7Fe10O22 in addition to some accessory reaction products namely α‐Fe2O3 and FeO(OH).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号