首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20350篇
  免费   3028篇
  国内免费   2095篇
化学   11505篇
晶体学   194篇
力学   821篇
综合类   72篇
数学   1543篇
物理学   5535篇
无线电   5803篇
  2024年   63篇
  2023年   515篇
  2022年   523篇
  2021年   742篇
  2020年   765篇
  2019年   763篇
  2018年   681篇
  2017年   640篇
  2016年   871篇
  2015年   924篇
  2014年   1169篇
  2013年   1462篇
  2012年   1671篇
  2011年   1805篇
  2010年   1303篇
  2009年   1205篇
  2008年   1394篇
  2007年   1277篇
  2006年   1123篇
  2005年   980篇
  2004年   717篇
  2003年   633篇
  2002年   576篇
  2001年   485篇
  2000年   436篇
  1999年   381篇
  1998年   325篇
  1997年   287篇
  1996年   247篇
  1995年   223篇
  1994年   253篇
  1993年   178篇
  1992年   160篇
  1991年   130篇
  1990年   116篇
  1989年   95篇
  1988年   64篇
  1987年   42篇
  1986年   43篇
  1985年   38篇
  1984年   30篇
  1983年   18篇
  1982年   20篇
  1981年   10篇
  1980年   19篇
  1979年   8篇
  1976年   10篇
  1975年   7篇
  1974年   8篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 226 毫秒
961.
(La0.8Sr0.2)0.95MnO3?δ (LSM)–Gd0.1Ce0.9O2?δ (gadolinium-doped ceria, GDC) composite cathode material was developed and characterized in terms of chemical stability, sintering behaviour, electrical conductivity, mechanical strength and microstructures to assess its feasibility as cathode support applications in cathode-supported fuel cell configurations. The sintering inhibition effect of LSM, in the presence of GDC, was observed and clearly demonstrated. The mechanical characterization of developed composites revealed that fracture behaviour is directly affected by pore size distribution. The Weibull strength distribution showed that for bimodal pore size distribution, two different fracture rates were present. Furthermore, the contiguity of LSM and GDC grains was calculated with image analysis, and correlation of microstructural features with mechanical and electrical properties was established. Subsequently, an LSM/GDC-based cathode-supported direct carbon fuel cell (DCFC) with Ni/ScSZ (scandia-stabilised zirconia) anode was successfully fabricated via slurry coating and co-firing techniques. The microstructures of electrodes and electrolyte layers were observed to confirm the desired morphology after co-sintering, and a single cell was electrochemically characterized in solid oxide fuel cell (SOFC) and DCFC mode with ambient air as oxidant. The higher values of open-circuit voltage indicated that the electrolyte layer prepared by vacuum slurry coating is dense enough. The corresponding peak power densities at 850 °C were 450 and 225 mW cm?2 in SOFC and DCFC mode, respectively. Electrochemical impedance spectroscopy was carried out to observe electrode polarization and ohmic resistance.  相似文献   
962.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
963.
The nanostructure of self-ordered porous anodic TiO2 nanotubes (PATNTs) has extraordinary influence on their physical and chemical properties. For this reason, extensive attention has been paid on pulse anodization to regulate the nanostructure of PATNT. However, the relationships between the nanostructures and current curves still remain unclear. Based on the traditional potentiostatic and pulse anodizations, five different modes (i.e., potentiostatic, pulse, triangle wave, decrease, and increase step by step) of applied voltage and their influences on the nanostructures of PATNT have been investigated in detail. The growing rates of the nanotubes anodized under five different modes were compared for the first time. The results show that the growing rate of pulse voltage anodization is the fastest, reaching 116.4 nm min?1. The slowest is triangle wave voltage anodization, only 59.3 nm min?1. When the applied voltage decreases step-by-step, branched nanotubes can be formed in the bottom of PATNT. Yet, when the applied voltage increases step-by-step, triple-layer nanotubes with different diameters are formed, and the forming mechanism of this special nanostructure is discussed. The present results may be helpful to understand the mechanism of PATNT and facilitate the assembling diverse nanostructures for extensive applications in photocatalysis, dye-sensitized solar cells, and biomedical devices.  相似文献   
964.
The charge state of the Pd surface is a critical parameter in terms of the ability of Pd nanocrystals to activate O2 to generate a species that behaves like singlet O2 both chemically and physically. Motivated by this finding, we designed a metal–semiconductor hybrid system in which Pd nanocrystals enclosed by {100} facets are deposited on TiO2 supports. Driven by the Schottky junction, the TiO2 supports can provide electrons for metal catalysts under illumination by appropriate light. Further examination by ultrafast spectroscopy revealed that the plasmonics of Pd may force a large number of electrons to undergo reverse migration from Pd to the conduction band of TiO2 under strong illumination, thus lowering the electron density of the Pd surface as a side effect. We were therefore able to rationally tailor the charge state of the metal surface and thus modulate the function of Pd nanocrystals in O2 activation and organic oxidation reactions by simply altering the intensity of light shed on Pd–TiO2 hybrid structures.  相似文献   
965.
The hydroazidation of alkynes is the most straightforward pathway to synthetically useful vinyl azides. However, a general hydroazidation of alkynes remains elusive. Herein, a chemo‐ and regioselective transformation of ethynyl carbinols into vinyl azides is described. This reaction produces a wide variety of 2‐azidoallyl alcohols with high efficiency and in good to excellent yields. These compounds constitute a new class of densely functionalized synthetic intermediates. Their synthetic potential has been demonstrated by further transformations into NH aziridines. The mechanistic aspects of the reaction will attract the attention of chemists working on alkyne chemistry and silver catalysis. The findings that are described in this paper represent significant advances in the regioselective hydroelementation of alkynes and open a new reaction manifold for exploitation.  相似文献   
966.
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein‐aggregation diseases and developing peptide‐based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein–protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation‐resistant proteins as biotherapeutics.  相似文献   
967.
968.
A practical method for the synthesis of azepine derivatives, a typical seven‐membered heterocyclic ring system, was developed and involves the use of hexafluoroantimonic acid to catalyze a formal [3+2+2] cycloaddition of aziridines with two alkynes. This method was applicable to two of the same or different terminal alkynes for the [3+2+2] cycloaddition with unactivated aziridines, and furnished the corresponding azepine derivatives in good yields with good levels of chemo‐ and regioselectivity. The mechanism was also discussed according to the results of the in situ HRMS and 1H NMR analysis.  相似文献   
969.
Two amphiphilic regioisomers, 9‐AP (1‐[11‐(9‐anthracenylmethoxy)‐11‐oxoundecyl]pyridinium bromide), and 2‐AP (1‐[11‐(2‐anthracenyl methoxy)‐11‐oxoundecyl]pyridinium bromide), were synthesized and their assembly behaviors were studied. Due to the anisotropic features of the anthracene structure, different substituted positions on the anthracene ring lead 9‐AP and 2‐AP to adapt “shaver” and “spatula”‐like molecular shapes, respectively, which consequently dictate the structure of their final assemblies. While “shaver”‐shaped 9‐AP assembled into microsheets, driven by π–π interactions, “spatula”‐shaped 2‐AP assembled into microtubular structures, promoted primarily by charge‐transfer interactions.  相似文献   
970.
The aggregation behavior of mixtures of the alkaline amino acid L ‐Arginine (L ‐Arg) and bis(2‐ethylhexyl)phosphoric acid (DEHPA) in water was studied in detail. At a fixed L ‐Arg concentration, a phase sequence of micellar phase (L1 phase), vesicle phase (Lαv phase), planar lamellar phase (Lαl phase), and sponge phase (L3 phase) was obtained with increasing DEHPA concentration due to changes in the packing parameter. The phase transition of the lamellar structures was determined by freeze‐fracture TEM and 2H NMR spectroscopy. Rheological measurements reflected the phase transition through significant variations of both the elastic modulus and the viscous modulus. Porous CeO2 materials were produced by utilizing the L3 phase as template, and the porous CeO2 exhibited excellent catalytic oxidation activity toward CO due to its high surface area, which provides more active sites for CO conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号