首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49070篇
  免费   6623篇
  国内免费   4743篇
化学   25769篇
晶体学   358篇
力学   2230篇
综合类   241篇
数学   4303篇
物理学   13560篇
无线电   13975篇
  2024年   169篇
  2023年   1146篇
  2022年   1362篇
  2021年   1803篇
  2020年   1788篇
  2019年   1599篇
  2018年   1380篇
  2017年   1327篇
  2016年   1878篇
  2015年   2039篇
  2014年   2477篇
  2013年   3196篇
  2012年   3942篇
  2011年   3865篇
  2010年   2789篇
  2009年   2760篇
  2008年   2975篇
  2007年   2646篇
  2006年   2562篇
  2005年   2254篇
  2004年   1751篇
  2003年   1396篇
  2002年   1249篇
  2001年   1071篇
  2000年   1045篇
  1999年   1175篇
  1998年   1033篇
  1997年   937篇
  1996年   991篇
  1995年   859篇
  1994年   779篇
  1993年   678篇
  1992年   620篇
  1991年   490篇
  1990年   417篇
  1989年   298篇
  1988年   268篇
  1987年   237篇
  1986年   166篇
  1985年   182篇
  1984年   153篇
  1983年   131篇
  1982年   100篇
  1981年   67篇
  1980年   60篇
  1979年   41篇
  1978年   31篇
  1977年   27篇
  1976年   31篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Muon spin relaxation (SR) studies have been performed in the normal spinel LiTi2O4 and the A-15 superconductor V3Si to measure the magnetic penetration depth . The relaxation rate(T) 1/2 in field-cooled measurements shows a sharp increase belowT c followed by saturation at low temperatures in both systems. This feature implies an isotropic energy gap without anomalous zeros, and most likelys-wave pairing. The low temperature penetration depth (T 0) is determined to be 2100Å for LiTi2O4 and 1300Å for V3Si respectively. Assuming a clean limit relation –2 n s /m *, we derive the Fermi temperatureT F n s/ 2/3 m * from the relaxation rate and the Sommerfeld constant asT F 3/4–1/4. Unlike conventional superconductors, both LiTi2O4 and V3Si have a large ratio ofT c /T F 0.01, only slightly smaller than those ratios in more exotic superconductors.We thank C. Ballard and K. Hoyle for technical assistance. Work at Columbia University is supported by NSF Grant No. DMR-89-13784 and Packard Foundation (YJU). Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. Work at Ames was supported by the Director for Energy Research, Office of Basic Energy Sciences.  相似文献   
952.
953.
954.
The red blood cell membrane (RBCm) provides tight protection, lowers the immunogenicity, and prolongs the circulation time of drugs in vivo when acting as the coating of drug delivery systems. However, the cellular uptake and release of drugs are hindered by RBCm. Docetaxel (DTX) is the first-line medicine for treating triple-negative breast cancer (TNBC), but it induces tumor metastasis. To solve these dilemmas, in this study, the photosensitizer 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-modified RBCm (DM) is prepared, which is coated onto a hybrid micelle consisting of the prodrugs of DTX and the anti-metastasis agent calcitriol (CTL), obtaining a nanoparticle, named HDC-DM. In a 4T1 tumor-bearing mouse model, after injecting HDC-DM, the intratumoral DTX and CTL concentrations are increased by 1.7 and 2.5 times compared with the free drug groups. After irradiating tumors with near-infrared laser, DiR elicits the photothermal effect, triggering the rupture of RBCm and drug release, promoting drug penetration in tumors, and inducing immunogenic cell death. The tumor growth inhibition rate is 77%, and the formation of lung metastases is reduced by 82%, with good biocompatibility. It is suggested that the combination of phototherapy, chemotherapy, and anti-metastatic therapy using HDC-DM is expected to be a powerful strategy for treating TNBC.  相似文献   
955.
The rational design and construction of efficient and inexpensive bifunctional oxygen electrocatalysts are highly desirable for the development of rechargeable Zn–air batteries (ZABs). Although single-atom Fe sites anchored on N-doped carbon catalysts (Fe1/NC) ensure high oxygen reduction reaction activity, their unitary atomically dispersed active center faces difficult condition in catalyzing oxygen evolution reaction simultaneously. Herein, a composite catalyst containing heterointerface between Fe1/NC and selenides ((Fe,Co)Se2) is constructed. The obtained (Fe,Co)Se2@Fe1/NC exhibits extremely narrow potential gap of 0.616 V and remarkable stability in alkaline media, outperforming the benchmark catalysts (Pt/C+RuO2: 0.720 V). Experimental results and density functional theory calculations reveal that heterointerface between Fe1/NC and (Fe,Co)Se2 accelerates the electron transfer and provides more moderate adsorption sites, which endow (Fe,Co)Se2@Fe1/NC with extremely high bifunctional oxygen catalytic activity. This study not only provides a superior bifunctional catalyst for ZABs, but also enriches the application of single-atom catalysts in multifunctional energy storage and conversion devices.  相似文献   
956.
Micro-supercapacitors (MSCs) as high-power density energy storage units are designed to meet the booming development of flexible electronics, requiring simple and fast fabrication technology. Herein, a fast and direct solvent-free patterning method is reported to fabricate shape-tailorable and flexible MSCs by floating catalyst chemical vapor deposition (FCCVD). The nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) are directly deposited on a patterned filter by FCCVD with designable patterns and facilely dry-transferred on versatile substrates. The obtained MSCs deliver an excellent areal capacitance of 3.6 mF cm−2 and volumetric capacitance of 98.6 F cm−3 at a scan rate of 5 mV s−1 along with excellent long-term cycle stability over 125 000 circles. Furthermore, the MSCs show good performance uniformity, which can be readily integrated via connection in parallel or series to deliver a stable high voltage (4 V with five serially connected devices) and large capacitance (5.1 mF with five parallel devices) at a scan rate of 100 mV s−1, enabling powering the light emitting displays. Therefore, this method blazes the trail of directly preparing flexible, shape-customizable, and high-performance MSCs.  相似文献   
957.
Construction of heterojunctions to photocatalysts is one of the most promising approaches to improve charge separation efficiency; however, the established constructing processes usually require high-temperature conditions and/or the adding of highly concentrated or expensive exotic species, and the improvement of effective contact and charge exchange between heterojunction components remains a problem. This work proposes an unprecedented “photobreeding” method and realizes the direct growth of Zn nanowires and Mott–Schottky heterojunctions from ZnS or viologen-coated ZnS microspheres through a photochemical reaction at room temperature without external species, while demonstrating the hypothesis proposed 140 years ago on the formation of Zn in the photochromic process of ZnS. After photobreeding of the heterojunctions, the hydrogen production efficiency of the photocatalysts increases by 2 orders of magnitude. This inexpensive, facile and efficient synthetic method will find applications in H2 production, organic synthesis, CO2 reduction, nitrogen fixation, and so on.  相似文献   
958.
A conductive engineered cardiac patch (ECP) can reconstruct the biomimetic regenerative microenvironment of an infarcted myocardium. Direct ink writing (DIW) and 3D printing can produce an ECP with precisely controlled microarchitectures. However, developing a printed ECP with high conductivity and flexibility for gapless attachment to conform to epicardial geometry remains a challenge. Herein, an asymmetrical DIW hydrophobic/hydrophilic membrane using heat-processed graphene oxide (GO) ink is developed. The “Masked spin coating” method is also developed that leads to a microscale GO (hydrophilic)/reduced GO (rGO, hydrophobic) physiological sensor, as well as a macroscale moisture-driven GO/rGO actuator. Depositing mussel-inspired polydopamine (PDA) coating on the one side of the DIW rGO , the ultrathin (approximately 500 nm) PDA-rGO (hydrophilic)/rGO (hydrophobic) microlattice (DrGOM) ECP is bestowed with the flexibility and moisture-responsive actuation that allows gapless attachment to the curved surface of the epicardium. Conformable DrGOM exhibits a promising therapeutic effect on rats' infarcted hearts through conductive microenvironment reconstruction and improved neovascularization.  相似文献   
959.
Surface chemistry and interlayer engineering determines the electrical properties of 2D MXene. However, it remains challenging to regulate the surface and interfacial chemistry of MXene simultaneously. Herein, simultaneous modulation of Ti3C2Tx MXene surface termination and layer spacing by alkali treatment are achieved. The electrical and electromagnetic properties of Ti3C2Tx are investigated in detail with respect to KOH and ammonia concentration dependence. A high concentration of KOH caused the Ti3C2Tx layer spacing to expand to 13.7 Å and the surface O/F ratio to increase to 33.84. Because of its weaker ionization effect, ammonia provides finer tuning compared to the drastic intercalation of KOH with a thorough sweeping of the F-containing groups. Ti3C2Tx is enriched with conductive -OH termination after ammonia treatment, which achieves an effective balance with the increased interlayer resistance. Therefore, NH3H2O-Ti3C2Tx achieves broad-band impedance matching and exhibits an efficient microwave loss of −49.1 dB at a low thickness of 1.7 mm, with an effective frequency bandwidth of 3.9 GHz. The results herein optimize the electrical properties of Ti3C2Tx using surface and interfacial chemistry to achieve broad microwave absorption, providing a framework for enhancing the electromagnetic wave loss of intrinsic MXene.  相似文献   
960.
Photodynamic therapy (PDT) as a non-invasive strategy shows high promise in cancer treatment. However, owing to the hypoxic tumor microenvironment and light irradiation-mediated rapid electron–hole pair recombination, the therapeutic efficacy of PDT is dramatically discounted by limited reactive oxygen species (ROS) generation. Herein, a multifunctional theranostic nanoheterojunction is rationally developed, in which 2D niobium carbide (Nb2C) MXene is in situ grown with barium titanate (BTO) to generate a robust photo-pyroelectric catalyst, termed as BTO@Nb2C nanosheets, for enhanced ROS production, originating from the effective electron–hole pair separation induced by the pyroelectric effect. Under the second near-infrared (NIR-II) laser irradiation, Nb2C MXene core-mediated photonic hyperthermia regulates temperature variation around BTO shells facilitating the electron–hole spatial separation, which reacts with the surrounding O2 and H2O molecules to yield toxic ROS, achieving a synergetic effect by means of combinaterial photothermal therapy with pyrocatalytic therapy. Correspondingly, the engineered BTO@Nb2C composite nanosheets feature benign biocompatibility and high antitumor efficiency with the tumor-inhibition rate of 94.9% in vivo, which can be applied as an imaging-guided real-time non-invasive synergetic dual-mode therapeutic nanomedicine for efficient tumor nanotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号