首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   39篇
  国内免费   8篇
化学   456篇
晶体学   1篇
力学   16篇
数学   193篇
物理学   142篇
无线电   204篇
  2023年   7篇
  2022年   2篇
  2021年   8篇
  2020年   17篇
  2019年   18篇
  2018年   16篇
  2017年   19篇
  2016年   25篇
  2015年   24篇
  2014年   17篇
  2013年   50篇
  2012年   60篇
  2011年   64篇
  2010年   49篇
  2009年   54篇
  2008年   69篇
  2007年   56篇
  2006年   80篇
  2005年   55篇
  2004年   65篇
  2003年   71篇
  2002年   40篇
  2001年   11篇
  2000年   7篇
  1999年   4篇
  1998年   12篇
  1997年   14篇
  1996年   11篇
  1995年   5篇
  1994年   4篇
  1993年   10篇
  1992年   12篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1968年   1篇
排序方式: 共有1012条查询结果,搜索用时 750 毫秒
11.
12.
13.
One of the major techniques used for the method development of ternary and quaternary high performance liquid chromatography (HPLC) systems has been to use mixture designs, often referred to as "Glajch's Triangle". This technique does not allow for the systematic and simultaneous optimization of other factors such as gradient time, pH and temperature that affect the quality of separations. An alternative approach is to use experimental designs. The condition, however, that the composition of all components of the mobile phase must total 100% presents a problem when trying to mathematically represent ranges of each mobile phase constituent of a ternary or quaternary system. A method is described here, based on spherical coordinate representations, that adheres to the constraints of the mobile phase composition and allows experimental designs, such as central composite and factorial designs, to be applied to the simultaneous optimization of the mobile phase composition. Other factors, in particular temperature and gradient time, can then be included in the design. As a result of applying these designs to the HPLC separation of phenols and corticosteroids, it was found necessary to include three-way interactions between experimental factors in the model. The significance of these interactions shows that they need to be considered in HPLC method development.  相似文献   
14.
Explicit expressions are presented for calculating vibration-to-translation (VT) energy conversion probabilities, essential in molecular laser isotope separation. VT conversions in molecular collisions occur by two mechanisms: (1) high-energy impact transfers prevailing at higher temperatures, and (2) Van der Waals-bonding encounters followed by (pre-)dissociations at lower temperatures. While mechanism (1) has been studied for over fifty years culminating in the Schwartz–Slawsky–Herzberg relation, a useful analytic expression for (2) has so far been lacking. An improved dimer formation theory developed by the author together with molecular pre-dissociation physics now provides a VT conversion relation for mechanism (2), which correctly predicts observations.  相似文献   
15.
The thermal and/or catalytic degradation of chloride-containing polymers causes dehydrohalogenation which produces hydrochloric acid. A nonaqueous method has been developed for the termination of hydrochloric acid. The sample is dissolved in tetrahydrofuran and titrated potentiometrically with a standard tetrabutylammonium hydroxide solution in a 7.5% (V/V) aqueous tetrahydrofuran solution with a combination glass-calomel electrode. The method has a relative precision of ±3.7% at the 95% confidence limit and a sensitivity of 25 ppm HCI.  相似文献   
16.
Periodic, self-consistent, density functional theory calculations have been performed to demonstrate that subsurface oxygen (O(sb)) dramatically increases the reactivity of the Ag(111) surface. O(sb) greatly facilitates the dissociation of H2, O2, and NO and enhances the binding of H, C, N, O, O2, CO, NO, C2H2, and C2H4 on the Ag(111) surface. This effect originates from an O(sb)-induced upshift of the d-band center of the Ag surface and becomes more pronounced at higher O(sb) coverage. Our findings point to the important role that near-surface impurities, such as O(sb), can play in determining the thermochemistry and kinetics of elementary steps catalyzed by transition metal surfaces.  相似文献   
17.
Summary. Early research investigating the effects of L-carnitine supplementation has examined its role in substrate metabolism and in acute exercise performance. These studies have yielded equivocal findings, partially due to difficulties in increasing muscle carnitine concentrations. However, recent studies have proposed that L-carnitine may play a different role in exercise physiology, and preliminary results have been encouraging. Current investigations have theorized that L-carnitine supplementation facilitates exercise recovery. Proposed mechanism is as follows: 1) increased serum carnitine concentration enhances capillary endothelial function; 2) increased blood flow and reduced hypoxia mitigate the cascade of ensuing, destructive chemical events following exercise; 3) thus allowing reduced structural damage of skeletal muscle mediated by more intact receptors in muscle needed for improved protein signaling. This paradigm explains decreased markers of purine catabolism, free radical formation, and muscle tissue disruption after resistance exercise and the increased repair of muscle proteins following long-term L-carnitine supplementation.  相似文献   
18.
19.
A first-principles study of methanol decomposition on Pt(111)   总被引:1,自引:0,他引:1  
A periodic, self-consistent, Density Functional Theory study of methanol decomposition on Pt(111) is presented. The thermochemistry and activation energy barriers for all the elementary steps, starting with O[bond]H scission and proceeding via sequential hydrogen abstraction from the resulting methoxy intermediate, are presented here. The minimum energy path is represented by a one-dimensional potential energy surface connecting methanol with its final decomposition products, CO and hydrogen gas. It is found that the rate-limiting step for this decomposition pathway is the abstraction of hydroxyl hydrogen from methanol. CO is clearly identified as a strong thermodynamic sink in the reaction pathway while the methoxy, formaldehyde, and formyl intermediates are found to have low barriers to decomposition, leading to very short lifetimes for these intermediates. Stable intermediates and transition states are found to obey gas-phase coordination and bond order rules on the Pt(111) surface.  相似文献   
20.
DFT calculations have been performed with the B3LYP and MPW1K functional on the hydrogen atom abstraction reactions of ethenoxyl with ethenol and of phenoxyl with both phenol and alpha-naphthol. Comparison with the results of G3 calculations shows that B3LYP seriously underestimates the barrier heights for the reaction of ethenoxyl with ethenol by both proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms. The MPW1K functional also underestimates the barrier heights, but by much less than B3LYP. Similarly, comparison with the results of experiments on the reaction of phenoxyl radical with alpha-naphthol indicates that the barrier height for the preferred PCET mechanism is calculated more accurately by MPW1K than by B3LYP. These findings indicate that the MPW1K functional is much better suited than B3LYP for calculations on hydrogen abstraction reactions by both HAT and PCET mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号