首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4855篇
  免费   220篇
  国内免费   58篇
化学   2865篇
晶体学   41篇
力学   133篇
数学   444篇
物理学   1089篇
无线电   561篇
  2024年   25篇
  2023年   63篇
  2022年   260篇
  2021年   252篇
  2020年   199篇
  2019年   206篇
  2018年   213篇
  2017年   159篇
  2016年   244篇
  2015年   162篇
  2014年   239篇
  2013年   424篇
  2012年   336篇
  2011年   325篇
  2010年   259篇
  2009年   205篇
  2008年   227篇
  2007年   199篇
  2006年   154篇
  2005年   89篇
  2004年   122篇
  2003年   70篇
  2002年   68篇
  2001年   38篇
  2000年   29篇
  1999年   37篇
  1998年   24篇
  1997年   39篇
  1996年   29篇
  1995年   13篇
  1994年   27篇
  1993年   23篇
  1992年   22篇
  1991年   15篇
  1990年   20篇
  1989年   15篇
  1988年   16篇
  1987年   18篇
  1985年   27篇
  1984年   26篇
  1983年   16篇
  1982年   21篇
  1981年   15篇
  1980年   39篇
  1979年   12篇
  1977年   15篇
  1976年   12篇
  1973年   11篇
  1969年   9篇
  1968年   8篇
排序方式: 共有5133条查询结果,搜索用时 15 毫秒
11.
Agriculture is the backbone of every developing country. Among various crops, wheat (Triticum aestivum L.) belongs to the family Poaceae and is the most important staple food crop of various countries. Different biotic (viruses, bacteria and fungi) and abiotic stresses (water logging, drought and salinity) adversely affect the qualitative and quantitative attributes of wheat. Among these stresses, salinity stress is a very important limiting factor affecting the morphological, physiological, biochemical attributes and grain yield of wheat. This research work was carried out to evaluate the influence of phytosynthesized TiO2 NPs on the germination, physiochemical, and yield attributes of wheat varieties in response to salinity. TiO2 NPs were synthesized using TiO2 salt and a Buddleja asiatica plant extract as a reducing and capping agent. Various concentrations of TiO2 nanoparticles (20, 40, 60 and 80 mg/L) and salt solutions (NaCl) (100 and 150 mM) were used. A total of 20 mg/L and 40 mg/L improve germination attributes, osmotic and water potential, carotenoid, total phenolic, and flavonoid content, soluble sugar and proteins, proline and amino acid content, superoxide dismutase activity, and reduce malondialdhehyde (MDA) content at both levels of salinity. These two concentrations also improved the yield attributes of wheat varieties at both salinity levels. The best results were observed at 40 mg/L of TiO2 NPs at both salinity levels. However, the highest concentrations (60 and 80 mg/L) of TiO2 NPs showed negative effects on germination, physiochemical and yield characteristics and causes stress in both wheat varieties under control irrigation conditions and salinity stress. Therefore, in conclusion, the findings of this research are that the foliar application of TiO2 NPs can help to improve tolerance against salinity stress in plants.  相似文献   
12.
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.  相似文献   
13.
Co-solubilization of the hydrophobic drugs Carbamezipine (CBZ) and Nifedipine (NFD) by micellar solutions at 25 °C, using two series of polyoxyethylene based nonionic surfactants, was measured and compared. The first series is composed of surfactants with a 12 carbon (C12) hydrophobic chain while the second series had 16 carbon (C16) hydrophobic chains. Experimental results were obtained for solubilization and co-solubilization of CBZ and NFD within the micelles at saturation and quantification was done in terms of the molar solubilization ratio and the micelle–water partition coefficient employing spectrophotometric and tensiometric techniques. The extent of micellar solubilization of CBZ is much greater than NFD. The C12 series of surfactants exhibit higher solubilization capacities for CBZ than the C16 series while the reverse is the case for NFD. Co-solubilization results showed competitive solubilization of the drugs. A synergistic effect on the solubilization of NFD was observed in the presence of CBZ in Brij30 and Brij56 surfactant systems while, in the remaining surfactants, the solubility of NFD was slightly reduced. Since the surfactants used in the present study are either nontoxic or have minimal toxicity, it is expected that they can be employed as drug delivery vehicles for co-administration of the two drugs in vivo. Both from industrial and research points of view, this paper reports a comprehensive study for co-solubilization of differently structured drugs in micellar media.  相似文献   
14.
ABSTRACT

Contamination of groundwater by heavy metal is one of the most emerging and serious environmental problems. There are so many methods which are available to overcome these problems. Among various available methods, hybrid organic–inorganic ion exchange resin has become more popular due to certain advantages over other available conventional methods; hence, in the present proposed work, we synthesised a hybrid organic–inorganic composite material polyacrylamide zirconium (IV) iodosulphosalicylate by using the sol-gel technique. Synthesised resin was characterised by various methods like Infrared spectroscopy and Thermogravimetric analysis-Differential thermal analysis. Various samples of this ion exchange resin are prepared by changing the condition of synthesis, i.e. concentration of acrylamide to rationalise the ion exchange capacity of the synthesise hybrid organic–inorganic ion exchange resins. A mixture of 0.1 M potassium iodate, 0.1 M sulphosalicylic acid and 0.1 M acrylamide was added dropwise to 0.4 M zirconium oxychloride accompanied by constant stirring for 8 h using magnetic stirrer at 70°C to yield polyacrylamide zirconium (IV) iodosulphosalicylate with maximum ion exchange capacity. Ion exchange capacity of synthesised resin was determined by column method and the maximum ion exchange capacity was found for Pb(II). Determination of kd values shows that the resin was highly selective for Pb (II).The selectivity for Pb was also evaluated by using certain binary mixture separation such as Ni (II)-Pb(II), Cu(II)-Pb(II), Cd(II)-Pb(II), Sr(II)-Pb(II), Ba(II)-Pb(II),Zn(II)-Pb(II) and Mg(II)-Pb(II).  相似文献   
15.
Saraca asoca is an IUCN red-listed tree species that extensively famous in the Ayurvedic medicine field. Saraca asoca (Roxb.) de Wilde belongs to the family Fabaceae, has been used to treat various gynecological disorders, bacterial infections, worm infestations, haemmorhagic dysentery, uterine pain, skin diseases, cancer, circulatory, cardiovascular disorders, and many others. All parts of the Saraca asoca have medicinal values. Numerous antioxidant compounds like flavonoids, catechin, beta-sitosterol, lignin glycosides are present in the bark, leaf, and flower of Saraca asoca plant, which help to stabilize free radicals molecules that are associated with the development of cancer conditions. Currently in the cancer research study field new and more effective modes of natural therapies are recently being analyzed. Traditional medicines have been used for their preventative role against various diseases in the human population. Plant based therapy for cancer prevention is becoming more demanding due to its various unique properties such as natural chemical composition, less expensiveness, naturally available., easily orally administrable, significant chemo-protective activities, nontoxic to normal cells in the body, less side effects compared to other synthetic chemotherapeutic drugs. The chemotherapeutic drugs will be harmful to both cancer and normal cells. Additionally, some common side effects or health consequences like vomiting, nausea, bleeding, hair fall, alopecia, hyperuricemia, thrombocytopenia, bone marrow depression, mucositis are very common after chemotherapeutic drug treatment in cancer. This review paper summarizes the evidences which agree with the fact that flavonoids and other phenolic compounds in Saraca asoca plant possess significant antioxidant activity and an efficient chemopreventive characteristic against different types of cancer. This paper reviews the anticancer activities of Saraca asoca bark and flower and discusses the potential preventive roles of phenolic and flavonoids compounds, present in bark and flower of Saraca asoca in the cancer treatment process.  相似文献   
16.
The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.  相似文献   
17.
18.
We propose, design, and demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) employing a thin graphene polyvinyl alcohol (PVA) film as a passive saturable absorber (SA). The graphene is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate (SDS) aqueous solution. Graphene flakes obtained from the process are mixed with PVA solution as the host polymer to produce a thin film, which acts as a passive Q-switcher in the YDFL ring cavity. The laser generates a stable pulse operating at a wavelength of 1,076.4 nm with a threshold pump power of 73.7 mW. At a maximum 980 nm pump power of 113.6 mW, the YDFL generates an optical pulse train with a repetition rate of 25.53 kHz and a pulse width of 10 μs. The maximum pulse energy of 50.9 nJ is obtained at a pump power of 109.9 mW. A higher-performance Q-switched YDFL is expected to be achieved with optimization of the graphene saturable absorber and the laser cavity.  相似文献   
19.
A low‐temperature, efficient and effective method was investigated for phytochemical hydroethanolic extraction of Nasturtium officinale (Brassicaceae). The phytocompounds of the selected plant leaves were identified by high‐performance liquid chromatography, gas chromatography with mass spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet‐visible spectroscopy. Acetic acid, d ‐alanine, octodrine, decanoic acid, and cyclohexylethylamine were the major phytocompounds identified in N. officinale leaves with high similarity match and spectral purity. The reducing and stabilizing potential of the extracted phytochemicals was demonstrated by synthesizing the metal oxide nanoparticles (MoO3) by treating ammonium heptamolybdate tetrahydrate (H4MO7N6O24.4H2O) aqueous complex with bioactive compounds of the leaves. The bio‐synthesized MoO3 nanoparticles were characterized by ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, field emission‐scanning electron microscopy, and gas chromatography with mass spectroscopy. Gas chromatography‐mass spectroscopy identified acetic acid, d ‐alanine, and octodrine as stabilizing agents in the synthesis of MoO3 nanoparticles.  相似文献   
20.
Alhagi camelorum (AC) is an old plant with a significant therapeutic value throughout Africa, Asia, and Latin America. The overuse of cisplatin (Cis > 50 mg/m2) is associated with observed nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. Remedial measures are needed for the protection of nephrotoxicity against cisplatin. Thus, we investigated the nephroprotective effects of AC plant extract to prevent cisplatin-induced nephrotoxicity in albino Wistar rats. The presence of polyphenols, phenolic compounds, tannins, and saponins was revealed during phytochemical investigation, and a significantly intense antioxidant activity was recorded. There were no toxicological symptoms in the treated rats, and no anatomical, physiological, or histological abnormalities were found compared to the control rats. The results of correcting cisplatin-induced nephrotoxicity revealed that the extract has a significant ability to treat kidney damage, with most parameters returning to normal after only three weeks of therapy. It is concluded that co-administration of cisplatin with AC extract showed exceptional nephroprotective effects at a dose of 600 mg/kg for Cis-induced nephrotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号