首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   29篇
  国内免费   12篇
化学   385篇
晶体学   6篇
力学   8篇
数学   92篇
物理学   83篇
无线电   69篇
  2023年   7篇
  2022年   3篇
  2021年   12篇
  2020年   6篇
  2019年   20篇
  2018年   9篇
  2017年   7篇
  2016年   17篇
  2015年   12篇
  2014年   21篇
  2013年   41篇
  2012年   47篇
  2011年   52篇
  2010年   24篇
  2009年   22篇
  2008年   40篇
  2007年   37篇
  2006年   27篇
  2005年   37篇
  2004年   31篇
  2003年   37篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   11篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1969年   2篇
  1967年   1篇
排序方式: 共有643条查询结果,搜索用时 0 毫秒
641.
We report on the mechanical loss from bulk and shear stresses in thin film, ion beam deposited, titania-doped tantala. The numerical values of these mechanical losses are necessary to fully calculate the Brownian thermal noise in precision optical cavities, including interferometric gravitational wave detectors like LIGO. We found the values from measuring the normal mode mechanical quality factors, Q's, in the frequency range of about 2000-10,000 Hz, of silica disks coated with titania-doped tantala coupled with calculating the elastic energy in shear and bulk stresses in the coating using a finite element model. We fit the results to both a frequency independent and frequency dependent model and find ?shear=(8.3±1.1)×10?4, ?bulk=(6.6±3.8)×10?4 with a frequency independent model and ?shear(f)=(5.0±0.7)×10?4+(5.4±1.1)×10?8f, ?bulk(f)=(11±2.8)×10?4?(8.7±4.7)×10?8f with a frequency dependent (linear) model. The ratio of these values suggest that modest improvement in the coating thermal noise may be possible in future gravitational wave detector optics made with titania-doped tantala as the high index coating material by optimizing the coating design to take advantage of the two different mechanical loss angles.  相似文献   
642.
Optically switchable field-effect transistors (OSFETs) are non-volatile photonic memory devices holding a great potential for applications in optical information storage and telecommunications. Solution processing of blends of photochromic molecules and π-conjugated polymers is a low-cost protocol to integrate simultaneously optical switching and charge transport functions in large-area devices. However, the limited reversibility of the isomerization of photochromic molecules due to steric hindrance when embedded in ordered polymeric matrices represents a severe limitation and it obliges to incorporate as much as 20% in weight of the photochromic component, thereby drastically diluting the electronic function, limiting the device performance. Herein, a comparative study of the photoresponsivity of a suitably designed diarylethene molecule is reported when embedded in the matrix of six different polymer semiconductors displaying diverse charge transport properties. In particular, this study focuses on three semi-crystalline polymers and three quasi-1D polymers. It is found that 1% w/w of 1,2-bis(5-(3,5-di-tert-butylphenyl)-2-methylthiophen-3-yl)cyclopent-1-ene in a blend with poly(indacenodithiophene-co-benzothiadiazole) is sufficient to fabricate OSFETs combining photo-modulation efficiencies of 45.5%, mobilities >1 cm2 V−1s−1, and photo-recovered efficiencies of 98.1%. These findings demonstrate that quasi-1D polymer semiconductors, because of their charge transport dominated by intra-molecular processes, epitomize the molecular design principles required for the fabrication of high-performance OSFETs.  相似文献   
643.
The development of organic electrochemical transistors (OECTs) capable of maintaining their high amplification, fast transient speed, and operational stability in harsh environments will advance the growth of next-generation wearable and biological electronics. In this study, a high-performance solid-state OECT (SSOECT) is successfully demonstrated, showing a recorded high transconductance of 220 ± 59 S cm−1, ultrafast device speed of ≈10 kHz with excellent operational stability over 10 000 switching cycles, and thermally stable under a wide temperature range from −50 to 110 °C. The developed SSOECTs are successfully used to detect low-amplitude physiological signals, showing a high signal-to-noise-ratio of 32.5 ± 2.1 dB. For the first time, the amplifying power of these SSOECTs is also retained and reliably shown to collect high-quality electrophysiological signals even under harsh temperatures (−50 and 110 °C). The demonstration of high-performing SSOECTs and its application in harsh environment are core steps toward their implementation in next-generation wearable electronics and bioelectronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号