首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72640篇
  免费   12355篇
  国内免费   1570篇
化学   56238篇
晶体学   561篇
力学   1351篇
综合类   1篇
数学   4180篇
物理学   8529篇
无线电   15705篇
  2023年   342篇
  2022年   439篇
  2021年   846篇
  2020年   2229篇
  2019年   3580篇
  2018年   1812篇
  2017年   1395篇
  2016年   4608篇
  2015年   4555篇
  2014年   4781篇
  2013年   6124篇
  2012年   5335篇
  2011年   4727篇
  2010年   4507篇
  2009年   4528篇
  2008年   4607篇
  2007年   3931篇
  2006年   3479篇
  2005年   3561篇
  2004年   3060篇
  2003年   2712篇
  2002年   3290篇
  2001年   2352篇
  2000年   2132篇
  1999年   1003篇
  1998年   550篇
  1997年   571篇
  1996年   560篇
  1995年   449篇
  1994年   433篇
  1993年   411篇
  1992年   396篇
  1991年   340篇
  1990年   265篇
  1989年   236篇
  1988年   217篇
  1987年   163篇
  1986年   122篇
  1985年   201篇
  1984年   153篇
  1983年   133篇
  1982年   152篇
  1981年   119篇
  1980年   106篇
  1978年   107篇
  1977年   105篇
  1976年   106篇
  1975年   118篇
  1974年   91篇
  1973年   120篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   
142.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   
143.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
144.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
145.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
146.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
147.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   
148.
In order to elucidate the distributions of the elements among the particulate and dissolved fractions in pond water, major-to-ultratrace elements in different sizes of particles as well as in the filtrate passed through the 0.05 microm filter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The different sizes of particle samples (ca. 100-300 microg each) were collected on the membrane filters with pore sizes of 10, 3.0, 1.2, 0.4, 0.2 and 0.05 microm, respectively, by sequential fractionation. As a result, about 40 elements in different sizes of particles could be determined by ICP-AES and ICP-MS, after acid digestion using HNO3/HF/HClO4. Then, the fractional distribution factors of major-to-ultratrace elements among the particulate and dissolved fractions were estimated from the analytical results. The total contents of Al, Fe, Ti, REEs (rare earth elements), Bi, Pb and Ag in the particulate fractions (larger than 0.05 microm) were more than 80-90%, while those of Ca, Sr, Cs, W, Ba, Mn and Co in the dissolved fraction, which corresponded to the filtrate passed through the 0.05 microm membrane filter, were more than 80%. It was further found that the fractional distributions of Cu and Zn in the dissolved fraction were ca. 50%. In addition, the enrichment factors (EFs) of the elements in the particulate fractions with particle sizes of 3.0-10 microm and 0.05-0.2 microm were estimated to elucidate their geochemical characteristics in natural water.  相似文献   
149.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
150.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号