首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2790篇
  免费   256篇
  国内免费   8篇
化学   1703篇
晶体学   19篇
力学   30篇
数学   105篇
物理学   388篇
无线电   809篇
  2024年   3篇
  2023年   33篇
  2022年   39篇
  2021年   82篇
  2020年   76篇
  2019年   97篇
  2018年   63篇
  2017年   56篇
  2016年   120篇
  2015年   113篇
  2014年   117篇
  2013年   224篇
  2012年   237篇
  2011年   243篇
  2010年   143篇
  2009年   149篇
  2008年   176篇
  2007年   148篇
  2006年   145篇
  2005年   145篇
  2004年   118篇
  2003年   100篇
  2002年   101篇
  2001年   53篇
  2000年   51篇
  1999年   44篇
  1998年   28篇
  1997年   24篇
  1996年   18篇
  1995年   13篇
  1994年   15篇
  1993年   7篇
  1992年   2篇
  1991年   8篇
  1990年   9篇
  1989年   11篇
  1988年   8篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1981年   2篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有3054条查询结果,搜索用时 15 毫秒
31.
A new series of 1beta-methylcarbapenems 1a-d bearing 5-methyl-4-mercaptopyrrolidinone rings has been prepared and evaluated for in vitro antibacterial activity and pharmacokinetic parameters. Most compounds showed excellent antibacterial activity and high stability to dehydropeptidase-1. We have synthesized optically active 5-methyl-4-hydroxypyrrolidinones from enantiomerically pure aziridine esters.  相似文献   
32.
Regio- and stereoselective iodinative cleavage of 2′,3′-anhydropurine nucleosides was achieved with samarium diiodide and ethyl bromoacetate to produce the corresponding 3′-iodopurine nucleosides, which were then converted to 3′-deoxypurine nucleosides including the natural product cordycepin.  相似文献   
33.
The chromatographic separation of lithium isotopes was investigated by chemical exchange with the recently synthesized polymer-bound dibenzo pyridino diamide azacrown (DBPDA) and reduced dibenzo pyridino diamide azacrown (RDBPDA). Column chromatography was employed for the determination of the effect of solvents and ligand conformation on the separation coefficients. The maximum separation coefficients, , for the DBPDA and RDBPDA at 20.0±0.02°C with acetonitrile as eluent, were found to be 0.034±0.002 and 0.035±0.002, respectively. The isotope separation coefficient and adsorption capability of the lithium ion on the DBPDA and RDBPDA were only slightly dependent on ligand structure, but strongly dependent on the solvent. DBPDA and RDBPDA appeared to have almost the same value for the isotope separation coefficient of lithium.  相似文献   
34.
There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces.  相似文献   
35.
The copper(II) ion in the synanti carboxyl­ate‐bridged one‐dimensional zigzag chain title complex, {[Cu(C16H18N3O2)]ClO4}n, exhibits a distorted trigonal–bipyramidal environment. Two N atoms and one carboxyl­ate O atom of the ligand form the basal plane, while the axial positions are filled by an N atom of the ligand and one O atom belonging to the carboxyl­ate group of an adjacent mol­ecule. The crystal packing is enhanced by C—H⋯O(perchlorate) hydrogen bonds.  相似文献   
36.
A xanthine biosensor was fabricated by the covalent immobilization of xanthine oxidase (XO) onto a functionalized conducting polymer (Poly‐5, 2′: 5′, 2″‐terthiophine‐3‐carboxylic acid), poly‐TTCA through the formation of amide bond between carboxylic acid groups of poly‐TTCA and amine groups of enzyme. The immobilization of XO onto the conducting polymer (XO/poly‐TTCA) was characterized using cyclic voltammetry, quartz crystal microbalance (QCM), and X‐ray photoelectron spectroscopy (XPS) techniques. The direct electron transfer of the immobilized XO at poly‐TTCA was found to be quasireversible and the electron transfer rate constant was determined to be 0.73 s?1. The biosensor efficiently detected xanthine through oxidation at +0.35 V and reduction at ?0.25 V (versus Ag/AgCl) of enzymatically generated hydrogen peroxide. Various experimental parameters, such as pH, temperature, and applied potential were optimized. The linear dynamic ranges of anodic and cathodic detections of xanthine were between 5.0×10?6?1.0×10?4 M and 5.0×10?7 to 1.0×10?4 M, respectively. The detection limits were determined to be of 1.0×10?6 M and 9.0×10?8 M with anodic and cathodic processes, respectively. The applicability of the biosensor was tested by detecting xanthine in blood serum and urine real samples.  相似文献   
37.
End-labeled free-solution electrophoresis of DNA   总被引:1,自引:0,他引:1  
DNA is a free-draining polymer. This subtle but "unfortunate" property of highly charged polyelectrolytes makes it impossible to separate nucleic acids by free-flow electrophoresis. This is why one must typically use a sieving matrix, such as a gel or an entangled polymer solution, in order to obtain some electrophoretic size separation. An alternative approach consists of breaking the charge to friction balance of free-draining DNA molecules. This can be achieved by labeling the DNA with a large, uncharged molecule (essentially a hydrodynamic parachute, which we also call a drag-tag) prior to electrophoresis; the resulting methodology is called end-labeled free-solution electrophoresis (ELFSE). In this article, we review the development of ELFSE over the last decade. In particular, we examine the theoretical concepts used to predict the ultimate performance of ELFSE for single-stranded (ssDNA) sequencing, the experimental results showing that ELFSE can indeed overcome the free-draining issue raised above, and the technological advances that are needed to speed the development of competitive ELFSE-based sequencing and separation technologies. Finally, we also review the reverse process, called free-solution conjugate electrophoresis (FSCE), wherein uncharged polymers of different sizes can be analyzed using a short DNA molecule as an electrophoretic engine.  相似文献   
38.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   
39.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   
40.
Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced cancers. However, the tumor microenvironment (TME) functions as a formidable barrier that severely impairs the efficacy of ICIs. While the crosstalk between tumor vessels and immune cells determines the nature of anti-tumor immunity, it is skewed toward a destructive cycle in growing tumors. First, the disorganized tumor vessels hinder CD8+ T cell trafficking into the TME, disable effector functions, and even kill T cells. Moreover, VEGF, the key driver of angiogenesis, interferes with the maturation of dendritic cells, thereby suppressing T cell priming, and VEGF also induces TOX-mediated exhaustion of CD8+ T cells. Meanwhile, a variety of innate and adaptive immune cells contribute to the malformation of tumor vessels. Protumoral M2-like macrophages as well as TH2 and Treg cells secrete pro-angiogenic factors that accelerate uncontrolled angiogenesis and promote vascular immaturity. While CD8+ T and CD4+ TH1 cells suppress angiogenesis and induce vascular maturation by secreting IFN-γ, they are unable to infiltrate the TME due to malformed tumor vessels. These findings led to preclinical studies that demonstrated that simultaneous targeting of tumor vessels and immunity is a viable strategy to normalize aberrant vascular-immune crosstalk and potentiate cancer immunotherapy. Furthermore, this combination strategy has been evidently demonstrated through recent pivotal clinical trials, granted approval from FDA, and is now being used in patients with kidney, liver, lung, or uterine cancer. Overall, combining anti-angiogenic therapy and ICI is a valid therapeutic strategy that can enhance cancer immunity and will further expand the landscape of cancer treatment.Subject terms: Cancer immunotherapy, Cancer microenvironment, Tumour angiogenesis, Tumour immunology, Targeted therapies  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号