首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5705篇
  免费   844篇
  国内免费   650篇
化学   3160篇
晶体学   55篇
力学   211篇
综合类   59篇
数学   502篇
物理学   1351篇
无线电   1861篇
  2024年   16篇
  2023年   102篇
  2022年   135篇
  2021年   185篇
  2020年   192篇
  2019年   194篇
  2018年   182篇
  2017年   172篇
  2016年   210篇
  2015年   265篇
  2014年   285篇
  2013年   381篇
  2012年   434篇
  2011年   447篇
  2010年   351篇
  2009年   322篇
  2008年   416篇
  2007年   317篇
  2006年   297篇
  2005年   257篇
  2004年   232篇
  2003年   231篇
  2002年   258篇
  2001年   245篇
  2000年   159篇
  1999年   138篇
  1998年   121篇
  1997年   88篇
  1996年   138篇
  1995年   95篇
  1994年   68篇
  1993年   50篇
  1992年   43篇
  1991年   34篇
  1990年   30篇
  1989年   22篇
  1988年   17篇
  1987年   16篇
  1986年   9篇
  1985年   16篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1974年   1篇
  1969年   1篇
  1957年   1篇
  1936年   1篇
排序方式: 共有7199条查询结果,搜索用时 343 毫秒
111.
High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium-ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi0.5Co0.2Mn0.3O2 (NCM523) and graphite electrodes are presented. The scale-dermis structure ensures a high energy density of 374.4 Wh L−1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load-bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.  相似文献   
112.
Liquid crystalline polymers (LCPs), especially liquid crystalline elastomers (LCEs) can generate ultrahigh shape change amplitude but has lower mechanical strength. Although some attempts have been tried to improve the mechanical performance of LCE, there are still limitations including complicated fabrication and high actuation temperature. Here, a versatile method is reported to fabricate light-driven actuator by covalently cross-linking polyurethane (PU) into LCP networks (PULCN). This new scheme is distinct from the previous interpenetrating network strategy, the hydrogen bonds and covalent bonds are used in this study to improve the miscibility of non-liquid-crystalline PU and LCP materials and enhance the stability of the composite system. This material not only possesses the shape memory properties of PU but shows shape-changing behavior of LCPs. With a shrinkage ratio of 20% at the phase transition temperature, the prepared materials reached a maximum mechanical strength of 20 MPa, higher than conventional LCP. Meanwhile, the resulting film shows diverse and programmable initial shapes by constructing crosslinking density gradient across the thickness of the film. By integration of PULCN with near-infrared light-responsive polydopamine, local and sequential light control is achieved. This study may provide a new route for the fabrication of programmable and mechanically robust light-driven soft actuator.  相似文献   
113.
Li-rich layered oxides (LLOs) have been considered as the most promising cathode materials for achieving high energy density Li-ion batteries. However, they suffer from continuous voltage decay during cycling, which seriously shortens the lifespan of the battery in practical applications. This review comprehensively elaborates and summarizes the state-of-the-art of the research in this field. It is started from the proposed mechanism of voltage decay that refers to the phase transition, microscopic defects, and oxygen redox or release. Furthermore, several strategies to mitigate the voltage decay of LLOs from different scales, such as surface modification, elemental doping, regulation of components, control of defect, and morphology design are summarized. Finally, a systematic outlook on the real root of voltage decay is provided, and more importantly, a potential solution to voltage recovery from electrochemistry. Based on this progress, some effective strategies with multiple scales will be feasible to create the conditions for their commercialization in the future.  相似文献   
114.
Emerging soft ionotronics better match the human body mechanically and electrically compared to conventional rigid electronics. They hold great potential for human-machine interfaces, wearable and implantable devices, and soft machines. Among various ionotronic devices, ionic junctions play critical roles in rectifying currents as electrical p–n junctions. Existing ionic junctions, however, are limited in electrical and mechanical performance, and are difficult to fabricate and degrade. Herein, the design, fabrication, and characterization of tough transient ionic junctions fabricated via 3D ionic microgel printing is reported. The 3D printing method demonstrates excellent printability and allows one to fabricate ionic junctions of various configurations with high fidelity. By combining ionic microgels, degradable networks, and highly charged biopolymers, the ionic junctions feature high stretchability (stretch limit 27), high fracture energy (>1000 Jm−2), excellent electrical performance (current rectification ratio >100), and transient stability (degrade in 1 week). A variety of ionotronic devices, including ionic diodes, ionic bipolar junction transistors, ionic full-wave rectifiers, and ionic touchpads are further demonstrated. This study merges ionotronics, 3D printing, and degradable hydrogels, and will motivate the future development of high-performance transient ionotronics.  相似文献   
115.
Ionic conductive soft materials for mimicking human skin are a promising topic since they can be thought of as a possible basis for biomimetic sensing. In pursuit of devices with a long working range and low signal delay, conductive materials with low hysteresis and good stretchability are highly demanded. To overcome the challenges of highly stretchable conductive materials with good resilience, herein a chemical design is proposed where polyrotaxanes act as topological cross-linkers to enhance the stretchability by sliding-induced reduced stress concentration while the compatible ionic liquid is introduced as a dispersant for low hysteresis. The obtained ionogels exhibit versatile properties more than low hysteresis (residual strain = 7%) and good stretchability (550%), and also anti-fatigue, biocompatibility, and good adhesion. The low hysteresis is attributed to lower energy dissipation from the well-dispersed polyrotaxanes by compatible ionic liquids. The mechanism provides a new insight in fabricating highly stretchable and low-hysteresis slide-ring materials. Furthermore, the conductivity of the ionogels and their responses to strains and temperatures are measured. Benefiting from the good conductivity and low hysteresis, the ionogel is applied to develop a wireless communication system to realize rapid human-machine interactions.  相似文献   
116.
Carbon nano-onions (CNOs) as a novel form of carbon materials hold peculiar structural features but their electrocatalytic applications are largely discouraged by the demanding synthesis conditions (e.g., ≥1500 °C and vacuum). Using C60 fullerene molecules as the sacrificial seeds and melamine as the main feedstock, herein, a novel strategy for the facile construction of CNOs nanoparticles is presented with ultrafine sizes (≈5 nm) at relatively low temperatures (≤900 °C) and atmospheric pressure. During the calcination, in-depth characterizations reveal that C60 can retain the melamine-derived graphitic carbon nitride from complete sublimation at high temperatures (≥700 °C). Owing to the N removal and subsequent pentagon generation, severely deformed graphitic fragments together with the disintegrated C60 molecules merge into larger sized nanosheets with high curvature, eventually leading to the formation of N-doped defect-rich CNOs. Owing to the integration of multiple favorable structural features of pentagons, edges, and N dopants, the CNOs obtained at 900 °C present superior oxygen reduction half-wave potential (0.853 VRHE) and zinc–air cathode performance to the commercial Pt/C (0.838 VRHE). Density functional theory calculation further uncovers that the carbon atoms adjacent to the N-doped edged pentagons are turned into the ORR-active sites with O2 protonation as the rate-determining step.  相似文献   
117.
In the field of flexible light-emitting display, goal-oriented intelligent molecular design is used to control various behaviors of molecules, which provides potential for the development of flexible light-emitting conjugated polymers (LCPs). The introduction of non-conjugated units into polymer molecules is a key prerequisite for realizing the intrinsic flexibility, but its easy interchain slip will also lead to the formation of interchain excited states, which is detrimental to the efficiency of light-emitting diodes. Herein, two kinds of fluorene-based rod-coil copolymer with stable deep blue emission characteristics is presented and with Commission Internationale de L'Eclairage (CIE) coordinates of (0.18, 0.14) and (0.15, 0.09), respectively. Surprisingly, the copolymer films show efficient blue emission even at 100% tension. Meanwhile, the rod-coil copolymer possesses better aging resistance compared to rigid π-conjugated counterparts. Finally, both rigid and flexible light-emitting diodes based on rod-coil copolymer exhibit stable deep blue emission, and the G2-based PLED with CIE coordinates of (0.16, 0.08), which approach National Television System Committee standard blue specification. These results confirm the validity of rod-coil copolymer design strategy in constructing inherently flexible polymers with deep blue emission, which have great application potential in flexible PLEDs.  相似文献   
118.
119.
Wang  Zongshan  Ding  Hongwei  Li  Bo  Bao  Liyong  Yang  Zhijun  Liu  Qianlin 《Wireless Personal Communications》2022,125(3):2167-2200

Maximizing network lifetime is the main goal of designing a wireless sensor network. Clustering and routing can effectively balance network energy consumption and prolong network lifetime. This paper presents a novel cluster-based routing protocol called EECRAIFA. In order to select the optimal cluster heads, Self-Organizing Map neural network is used to perform preliminary clustering on the network nodes, and then the relative reasonable level of the cluster, the cluster head energy, the average distance within the cluster and other factors are introduced into the firefly algorithm (FA) to optimize the network clustering. In addition, the concept of decision domain is introduced into the FA to further disperse cluster heads and form reasonable clusters. In the inter-cluster routing stage, the inter-cluster routing is established by an improved ant colony optimization (ACO). Considering factors such as the angle, distance and energy of the node, the heuristic function is improved to make the selection of the next hop more targeted. In addition, the coefficient of variation in statistics is introduced into the process of updating pheromones, and the path is optimized by combining energy and distance. In order to further improve the network throughput, a polling control mechanism based on busy/idle nodes is introduced during the intra-cluster communication phase. The simulation experiment results prove that under different application scenarios, EECRAIFA can effectively balance the network energy consumption, extend the network lifetime, and improve network throughput.

  相似文献   
120.
Due to the complexity of blockchain technology, it usually costs too much effort to build, maintain and monitor a blockchain system that supports a targeted application. To this end, the emerging “Blockchain as a Service” (BaaS) makes the blockchain and distributed ledgers more accessible, particularly for businesses, by reducing costs and overheads. BaaS combines the high computing power of cloud computing, the pervasiveness of IoT and the decentralization of blockchain, allowing people to build their own applications while ensuring the transparency and openness of the system. This paper surveys the research outputs of both academia and industry. First, it introduces the representative architectures of BaaS systems and then summarizes the research contributions of BaaS from the technologies for service provision, roles, container and virtualization, interfaces, customization and evaluation. The typical applications of BaaS in both academic and practical domains are also introduced. At present, the research on the blockchain is abundant, but research on BaaS is still in its infancy. Six challenges of BaaS are concluded in this paper for further study directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号