首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1481篇
  免费   80篇
  国内免费   9篇
化学   834篇
晶体学   16篇
力学   34篇
数学   137篇
物理学   201篇
无线电   348篇
  2024年   2篇
  2023年   24篇
  2022年   27篇
  2021年   45篇
  2020年   34篇
  2019年   34篇
  2018年   21篇
  2017年   22篇
  2016年   55篇
  2015年   53篇
  2014年   54篇
  2013年   105篇
  2012年   96篇
  2011年   119篇
  2010年   78篇
  2009年   70篇
  2008年   105篇
  2007年   67篇
  2006年   82篇
  2005年   109篇
  2004年   84篇
  2003年   68篇
  2002年   50篇
  2001年   28篇
  2000年   31篇
  1999年   20篇
  1998年   23篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1981年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1955年   1篇
排序方式: 共有1570条查询结果,搜索用时 15 毫秒
41.
The mixing of Ag ion-doped poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAA) produced Ag ion-doped polyelectrolyte complex particles (PECs) in solution. Positively charged Ag ion-doped PECs (Ag ion PECs) with a spherical shape were deposited alternatively with PAA to form a multilayer assembly. The multilayered film containing Ag ion PECs was reduced to generate a composite nanostructure. Metal nanoparticle (NP)-enriched nanocomposite films were formed by an additional process of the postadsorption of precursors on PECs within the nanocomposite films, which resulted in the enhancement of the catalytic and electrical properties of the composite films. Because the films contain PECs that are responsive to changes in pH and most of the NPs are embedded in the PECs, interesting catalytic properties, which are unexpected in a particle-type catalyst, were observed upon pH changes. As a result of the reversible structural changes of the films and the immobilization of the NPs within the films, the film-type catalysts showed enhanced performance and stability during catalytic reactions under various pH conditions, compared to particle-type catalysts.  相似文献   
42.
We use a first-principles calculation and small-angle neutron scattering (SANS) to investigate the mechanism and the nanosize products of the sol-gel reaction with diphenylsilanediol (DPD) and 3-methacryloxypropyltrimethoxysilane (MEMO) precursors in synthesizing a hybrid waveguide material. It is predicted that switching between a DPD hydroxyl and a MEMO methoxy with a reaction rate of 6.8 x 10(-6) s(-1) at 300 K is the fastest process for the first reaction step, thus generating diphenylmethoxysilanol (DPM) and 3-methacryloxypropyldimethoxysilanol (MEDO) as products. However, we determine that this reaction pathway could be modified by the presence of the H2O released from a catalyst such as Ba(OH)2.H2O. Next, switching between the DPM hydroxyl and the MEDO methoxy is followed to generate diphenyldimethoxysilane (DPDM) and 3-methacryloxypropylmethoxysilanediol (MEMDO). However, condensation between a MEMDO hydroxyl and a DPDM methoxy is found to be most favorable for the third reaction step, which generates the DPDM-MEMDO dimer and CH3OH molecule as products. In a similar fashion, a DPDM methoxy of the DPDM-MEMDO dimer can condense with a MEMDO hydroxyl of the second DPDM-MEMDO dimer to increase the chain, but its reaction rate of 2.8 x 10(-11) s(-1) is predicted to be about 5 times smaller than that between a DPDM methoxy and a MEMDO hydroxyl. This implies that the reaction rate for the larger nanostructures becomes smaller. Additionally, our SANS measurements determine that the final products from our sol-gel reaction are on the nanometer scale, at sizes from 1.76 to 2.36 nm.  相似文献   
43.
Tetraethylorthosilicate (TEOS)/vinyltriethoxysilane (VTES) hybrid materials were prepared and the hydrolysis and condensation reactions during processing were investigated by means of 29Si NMR solution spectroscopy. The variation of drying characteristics of the coating films was examined with respect to the tetraethylorthosilicate (TEOS)/vinyltriethoxysilane (VTES) ratio, as well as drying temperature, by FT-IR spectroscopy. It is shown that the TO mode of Si–O–Si stretching absorption was enhanced with increasing tetraethylorthosilicate (TEOS) content and drying temperature. Also, the wettability of the coating films on polymer films was independent of the solution composition but enhanced by the precoating of poly(4-hydroxystrene) (PHS) as a wetting agent. The adhesion between the coating and the films was also enhanced when the vinyltriethoxysilane (VTES) content in the coating solution was increased.  相似文献   
44.
In pursuit of photo‐curable adhesive for optical communication, dual‐curable acrylic oligomers (AOs) having alkoxy silane group, fluorine atoms and vinyl group as a pendent group were synthesized by two‐stage reactions. The isocyanate group containing oligomers were firstly synthesized via radical polymerization of acrylic monomers, and followed by urethane reaction with 2‐hydroxy ethyl methacrylate. The dual curing behaviors, e.g. thermal and photo‐cure, were studied by using photo‐differential scanning calorimetry (DSC) and real‐time IR. An optimum adhesive formulation, based on AO (15 g), epoxy acrylate (80 g), isobonyl methacrylate (17 g) and photo‐initiator (3 g), was obtained. As the content of AO was increased in the optical adhesive formulation, refractive index decreased but transmittance increased due to the increase in fluorine content. The optical transmittance at the range of 1.3 to 1.55 μm was higher than 90%. The addition of colloidal silica with the earlier mentioned formulation was helpful in decreasing crosslinking volume shrinkage and the increasing of glass fiber adhesion. The required properties for the optical adhesive, including chemical resistance and thermal resistance, dimension stability, etc. were also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
45.
We have found that single-chain schizophyllan and curdlan (s-SPG and s-curdlan, respectively) can dissolve as-grown and cut single-walled carbon nanotubes (ag-SWNTs and c-SWNTs, respectively) in aqueous solution. The vis-NIR spectra of the composites suggest that c-SWNTs are dissolved as a bundle, whereas ag-SWNTs exist as one or only a few pieces in the tubular hollow constructed by the helical structure inherent to these beta-1,3-glucans. EDX and CLSM measurements and TEM observation established that the distribution map of these polysaccharides overlaps well with the image of SWNTs, indicating that these two components form a composite. Very interestingly, when c-SWNTs were dissolved with the aid of s-SPG or s-curdlan in water, a clear periodical structure with inclined stripes, as detected by AFM, appeared on the fibrous composite surface. Because this periodical structure has never been recognized for the composites with other water-soluble polymers, one can regard that s-SPG or s-curdlan wraps c-SWNTs constructing a helically twined structure. High-resolution TEM observation of an ag-SWNTs/s-SPG composite gave a clearer image in that two s-SPG chains twine one ag-SWNT and the helical motif is right-handed. When this sample was subjected to the AFM measurement, the composite showed the 2-3 nm height. This height implies that one piece of ag-SWNT is included in the s-SPGs helical structure. As a summary, it has been established that beta-1,3-glucans such as s-SPG and s-curdlan not only dissolve SWNTs but also create a novel superstructure on the surface.  相似文献   
46.
Abstract

To improve the compatibility of styrene-maleic anhydride copolymer/low density polyethylene (SMA/LDPE) blends, LDPE grafted with 2-hydroxyethyl methacrylate-isophorone diisocyanate (LDPE-g-HI) was prepared and blended with SMA of which anhydride was converted to carboxylic acid (SMAAc). The infrared spectra of LDPE-g-HI established the presence of isocyanate group. In the blend morphology, some adhesions between the two phases and much finer dispersions were observed in the SMAAc/LDPE-g-HI blends, indicating that chemical reactions took place during the melt blending. The lower heat capacity change at the glass transition temperature demonstrated that chemical bonds were produced in the SMAAc/LDPE-g-HI blends. From the results of the rheological test, it was found that strong positive deviation from the mixing rule occurred in viscosity for the SMAAc/LDPE-g-HI blends, concerning with good adhesion and finer dispersions. In the measurement of tensile property, the improved mechanical properties for the SMAAc/LDPE-g-HI blends were shown.  相似文献   
47.
This study describes the development of a microfluidic device for the high-throughput screening of culture conditions, such as the optimum sodium acetate concentration for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii. An analysis of the microalgal growth on the microfluidic device revealed an optimum sodium acetate concentration of 5.72 g L?1. The lipid content, determined by the 4,4-Difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY® 505/515) staining method, increased with the sodium acetate concentration. The results were found to be statistically reproducible with respect to cell growth and lipid production. Other nutrient conditions, including the nitrogen and phosphorus concentrations, can also be optimized on the same microfluidic platform. The microfluidic device performance results agreed well with the results obtained from the flask-scale experiments, validating that the culture conditions were scalable. Finally, we, for the first time, established a method for the absolute quantification of the microalgal lipid content in the picoliter culture volumes by comparing the on-chip and off-chip data. In conclusion, we successfully demonstrated the high-throughput screening of sodium acetate concentrations that induced high growth rates and high lipid contents in C. reinhardtii cells on the microfluidic device.
Figure
We have developed a microfluidic device for the high-throughput screening of culture conditions for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii  相似文献   
48.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
49.
A rapid and efficient high‐performance counter‐current chromatography (HPCCC) method was developed to separate five oligostilbenes from the roots of Vitis amurensis. An n‐hexane/ethyl acetate/methanol/water system (4:8:4:10, v/v/v/v) was selected as an optimal two‐phase solvent system of which the upper phase was used as the stationary phase and the lower phase was used as the mobile one. Partition coefficient values for the target compounds under these optimized conditions were 0.28 ( 1 , ampleosin A), 7.12 ( 2 , (+)‐g‐viniferin), 2.26 ( 3 , vitisin A), 5.38 ( 4 , wilsonol C), and 11.23 ( 5 , vitisin B). Flow‐rate gradient HPCCC (4 mL/min in 0–70 min, 8 mL/min in 70–250 min) was applied to isolate the target compounds in as high purity as possible within the shortest possible run time. Under these conditions, ampelopsin A (12.1 mg), (+)‐g‐viniferin (10.4 mg), vitisin A (2.8 mg), wilsonol C (3.2 mg), and vitisin B (37 mg) were isolated with >95% purity from 150 mg of enriched oligostilbene extract. Although the KD of the last eluted compound, vitisin B (KD = 11.23), was relatively large, it was eluted in 115–145 min using the two‐phase solvent system. This study shows that HPCCC is an efficient tool for the isolation and purification of natural products.  相似文献   
50.
Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号