The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site‐directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in‐cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide‐functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm , and shows high stability against reduction. Using this label, the guanine‐nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells. 相似文献
Carbon corrosion at high anodic potentials is a major source of instability, especially in acidic electrolytes and impairs the long‐term functionality of electrodes. In‐depth investigation of carbon corrosion in alkaline environment by means of differential electrochemical mass spectrometry (DEMS) is prevented by the conversion of CO2 into CO32?. We report the adaptation of a DEMS system for online CO2 detection as the product of carbon corrosion in alkaline electrolytes. A new cell design allows for in situ acidification of the electrolyte to release initially dissolved CO32? as CO2 in front of the DEMS membrane and its subsequent detection by mass spectrometry. DEMS studies of a carbon‐supported nickel boride (NixB/C) catalyst and Vulcan XC 72 at high anodic potentials suggest protection of carbon in the presence of highly active oxygen evolution electrocatalysts. Most importantly, carbon corrosion is decreased in alkaline solution. 相似文献
[V2O]+ remains “invisible” in the thermal gas‐phase reaction of bare [V2]+ with CO2 giving rise to [V2O2]+; this is because the [V2O]+ intermediate is being consumed more than 230 times faster than it is generated. However, the fleeting existence of [V2O]+ and its involvement in the [V2]+ → [V2O2]+ chemistry are demonstrated by a cross‐over labeling experiment with a 1:1 mixture of C16O2/C18O2, generating the product ions [V216O2]+, [V216O18O]+, and [V218O2]+ in a 1:2:1 ratio. Density functional theory (DFT) calculations help to understand the remarkable and unexpected reactivity differences of [V2]+ versus [V2O]+ towards CO2. 相似文献
Hydroxy‐mediated methoxy formation or stabilization is probably an important process in many methanol adsorption systems. Hydrogen atoms originating from the scission of the methanol O? H bond react with the substrate and form water. This process may result 1) in the production of additional surface defects as reactive centers for methoxy formation and 2) in the stabilization of methoxy groups by suppression of methanol formation.
A series of heterogeneous iridium containing catalysts was synthesized by the incipient wetness method. The support material was silica gel. The heterogeneous catalysts were able to dehydrogenate isopentane to isopentene with very high activities and selectivities. The use of external additives (e.g. PPh3) in case of the heterogenized iridium complex IrH(CO)(PPh3)3 increased the conversion of isopentane up to 30%. Such a conversion rate has been predicted by model calculations of the thermodynamic equilibrium of the dehydrogenation reaction of isopentane. 相似文献
A DNA biosensor was constructed by immobilizing DNA on a glassy carbon (GC) electrode modified with multiwall carbon nanotubes (MWNTs) dispersed in Nafion (DNA/MWNTs/GCE). The DNA-modified electrode exhibited two well-defined oxidation peaks corresponding to the guanine and adenine residues of DNA, respectively. The effects of the adsorption potential, DNA concentration and quantity of MWNTs used for DNA immobilization were investigated, as were the effects of buffer, pH and scan rate on the voltammetric behavior of DNA. Phenol, m-cresol and catechol showed noticeable inhibition towards the response of the electrode due to their interactions with DNA. These findings were used to design biosensors with linear response to these phenolic pollutants. 相似文献