首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
化学   28篇
物理学   17篇
无线电   3篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1967年   2篇
  1966年   1篇
  1891年   2篇
  1890年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
41.
Electron transport through a linear array of nanoscopic rings with six quantum dot sites per ring is investigated in the presence of an external magnetic flux producing an Aharonov-Bohm phase shift effect. A tight-binding model is employed to analytically calculate the transmission as a function of electron energy, external flux, and inter-site coupling parameters. Current vs. voltage relationships of the ring system are computed using a standard scattering theory of transport and shown to modulate between semiconductor and ohmic characteristics. System parameters are adjusted in order to study the effects of a longitudinal strain on the transmission properties of the linear multiple-ring array. Longitudinal strain is modeled with a Slater-Koster type theory and is demonstrated to affect the transmission properties primarily by narrowing the transmission bands and opening up additional bandgaps in the band structure. In addition, a universal resonant transmission condition as a function of flux is extended to show that the application of strain causes the resonant transmission peaks to converge towards one-half of a flux quantum.  相似文献   
42.
43.
Accurate determination of integral intensities of broad lines is difficult when spin relaxation during the applied pulses cannot be neglected and/or when ringing of the tank circuit interferes with the signal. Here we present an extension of the analytical solution of the generalized Bloch equations (G. A. Morris and P. B. Chilvers, J. Magn. Reson. A 107, 236 (1994)), which is then used to evaluate the signal intensity obtained in a composite pulse experiment designed to cancel ringing effects. Comparing intensities of broad and narrow (81)Br spectral lines tests and proves the accuracy of this approach.  相似文献   
44.
Multi-electron coincidence measurements on photoionisation of H(2)S have been carried out at photon energies from 40 to 250 eV. They quantify molecular field effects on the Auger process in detail and are in good agreement with the existing theory. Spectra of core-valence double ionisation of H(2)S are presented and partially analysed. Auger decays from the core-valence states produce triply charged product spectra with unexplained and surprising intensity distributions. Triple ionisation by the double Auger process from 2p hole states shows little effect of the molecular field splitting, but includes a substantial contribution from cascade processes, some involving dissociation in intermediate states. The onset of triple ionisation at the molecular geometry is determined as 61 ± 0.5 eV.  相似文献   
45.
Based on a theory of extra dimensional confinement of quantum particles [E. R. Hedin, Physics Essays, 2012, 25(2): 177], a simple model of a nucleon nucleon (NN) central potential is derived which quantitatively reproduces tile radial profile of other models, without adjusting any free pa- rameters. It is postulated that a higher-dimensional simple harmonic oscillator confining potential localizes particles into three-dimensional (3D) space, but allows for an ewmescent penetration of the particles into two higtmr spatial dimensions. Producing an effect identical with the relativistic quan- tum phenolnenon of zitterbewegung, the higher-dimensional oscillations of amplitude h(mc) call be alternatively viewed as a localized curvature of 3D space back and forth into the higher dimensions. The overall spatial curvature is proportional to the particle's extra-dimensional ground state wave function in tile higher-dimensional harmonic confining potential well. Minimizing the overlapping curvature (proportional to the energy) of two particles in proximity to each other, subject to the constraint that for the two particles to occupy the same spatial location one of them must be excited into the 1st excited state of the harmonic potential well, gives the desired NN potential. Specifying only the imcleon masses, the resulting potential well and repulsive core reproduces the radial profile of several published NN central potential models. In addition, the predicted height of the repulsive core, when used to estimate the maximum neutron star mass, matches well with the best estimates from relativistic theory incorporating standard nuclear matter equations of state. Nucleon spin, Coulomb interactions, and internal nucleon structure are not considered in the theory as presented in this article.  相似文献   
46.
We report on a new series of isoreticular frameworks based on zinc and 2‐substituted imidazolate‐4‐amide‐5‐imidate (IFP‐1–4, IFP=imidazolate framework Potsdam) that form one‐dimensional, microporous hexagonal channels. Varying R in the 2‐substitued linker (R=Me (IFP‐1), Cl (IFP‐2), Br (IFP‐3), Et (IFP‐4)) allowed the channel diameter (4.0–1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP‐2, IFP‐3 and IFP‐4 are isostructural to previously reported IFP‐1. The structures of IFP‐2 and IFP‐3 were solved by X‐ray crystallographic analyses. The structure of IFP‐4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP‐MAS NMR spectroscopy. All IFPs showed high thermal stability (345–400 °C); IFP‐1 and IFP‐4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP‐1–4 under dry conditions and that both CO2 and H2O are physisorbed on IFP‐1 under moist conditions.  相似文献   
47.
The robustness and sensitivities of different polarization-transfer methods that exploit heteronuclear dipole-dipole couplings are compared for a series of heterogeneous solid systems, including polycrystalline tetrakis(trimethylsilyl)silane (TKS), adamantane, a physical mixture of doubly (13)C,(15)N-enriched and singly (13)C-enriched polycrystalline glycine, and a powder sample of siliceous marine diatoms, Thalossiosira pseudonana. The methods were analyzed according to their respective frequency-matching spectra or resultant signal intensities. For a series of (13)C{(1)H} cross-polarization experiments, adiabatic passage Hartmann-Hahn cross-polarization (APHH-CP) was shown to have several advantages over other methods, including Hartmann-Hahn cross-polarization (HHCP), variable-amplitude cross-polarization (VACP), and ramped-amplitude cross-polarization (RACP). For X-Y systems, such as (13)C{(15)N}, high and comparable sensitivities were obtained by using APHH-CP with Lee-Goldburg decoupling or by using the transferred-echo double resonance (TEDOR) experiment. The findings were applied to multinuclear (1)H, (13)C, (15)N, and (29)Si CP MAS characterization of a powder diatom sample, a challenging inorganic-organic hybrid solid that places high demands on NMR signal sensitivity.  相似文献   
48.
Scalar (J) couplings in solid-state NMR spectroscopy are sensitive to covalent through-bond interactions that make them informative structural probes for a wide range of complex materials. Until now, however, they have been generally unsuitable for use in isotopically enriched solids, such as proteins or many inorganic solids, because of the complications presented by multiple coupled but nonisolated spins. Such difficulties are overcome by incorporating a z-filter that results in a robust method for measuring pure J-coupling modulations between selected pairs of nuclei in an isotopically enriched spin system. The reliability of the new experimental approach is established by using numerical simulations and tested on fully (13)C-labeled polycrystalline L-alanine. It is furthermore shown to be applicable to partially enriched systems, when used in combination with a selective double-quantum (DQ) filter, as demonstrated for the measurement of (2)J((29)Si-O-(29)Si) couplings in a 50% (29)Si-enriched surfactant-templated layered silicate lacking long-range 3D crystallinity. J-coupling constants are obtained with sufficient accuracy to distinguish between different (29)Si-O-(29)Si pairs, shedding insight on the local structure of the silicate framework. The new experiment is appropriate for fully or partially enriched liquid or solid samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号