首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   67篇
  国内免费   15篇
化学   538篇
晶体学   7篇
力学   29篇
数学   113篇
物理学   149篇
无线电   84篇
  2024年   1篇
  2023年   6篇
  2022年   31篇
  2021年   46篇
  2020年   42篇
  2019年   53篇
  2018年   60篇
  2017年   58篇
  2016年   86篇
  2015年   40篇
  2014年   46篇
  2013年   94篇
  2012年   79篇
  2011年   70篇
  2010年   43篇
  2009年   33篇
  2008年   20篇
  2007年   30篇
  2006年   17篇
  2005年   9篇
  2004年   14篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1979年   2篇
  1973年   1篇
排序方式: 共有920条查询结果,搜索用时 265 毫秒
31.
The single electron transistor (SET) is a nanoscale switching device with a simple equivalent circuit. It can work very fast as it is based on the tunneling of single electrons. Its nanostructure contains a quantum dot island whose material impacts on the device operation. Carbon allotropes such as fullerene (C60), carbon nanotubes (CNTs) and graphene nanoscrolls (GNSs) can be utilized as the quantum dot island in SETs. In this study, multiple quantum dot islands such as GNS-CNT and GNS-C60 are utilized in SET devices. The currents of two counterpart devices are modeled and analyzed. The impacts of important parameters such as temperature and applied gate voltage on the current of two SETs are investigated using proposed mathematical models. Moreover, the impacts of CNT length, fullerene diameter, GNS length, and GNS spiral length and number of turns on the SET’s current are explored. Additionally, the Coulomb blockade ranges (CB) of the two SETs are compared. The results reveal that the GNS-CNT SET has a lower Coulomb blockade range and a higher current than the GNS-C60 SET. Their charge stability diagrams indicate that the GNS-CNT SET has smaller Coulomb diamond areas, zero-current regions, and zero-conductance regions than the GNS-C60 SET.  相似文献   
32.
Today, analyzing of sound pressure level and frequency is considered as an important index in human society. Sound experts believe that analyzing of these parameters can help us to better understanding of work environments. Sound measurements and frequency analysis did to fix the harmful frequency in all sections in Shiraz gas power plant with sound analyzer model BSWA 308. The sound pressure levels (LP) and the one and one-third octave band were continuously measured in A and C weighting networks and slow mode for time response. Excel 2013 and Minitab 18.1 software used for statistical calculations. Results analyzed by Minitab 18.1 software. The highest harmful frequency in Shiraz Gas Power Plant (SGPP) was 50 Hz with 115 dB. The sound pressure level (SPL) ranged from 45 dB to 120 dB in one-third octave band and weighting network C. The maximum sound pressure level was in Craft electricity generator with 105.3 dB and 67 Hz. Sound pressure level in surrounded environment was 120 dB. According to the results, in this industry the sound pressure level exceeded the Occupational Exposure Level of Iran (OEL). The value of sound pressure level were higher than the Standard of occupational health. SGPP consumes 47000 cubic meters of natural gas per hour to produce 100 MW (Mega Watt) of electricity. It is very high and it is not economical and cost effective. These numbers indicate that the power plant’s efficiency is low. It could be concluded that the noise pollution is an important issue in these industries. Moreover, SGPP produce noise with loss energy. Frequencies rotation at high sound pressure levels toward low frequencies were happened.  相似文献   
33.
Donor-acceptor cyclopropanes or cyclobutanes are dipolar reagents, which are widely used in the synthesis of complex organic (hetero)cycles in ring expansion reactions. Applying this concept to boron containing heterocycles, the four-membered borete cyclo-iPr2N-BC10H6 reacted with the carbon donor ligands 2,6-xylylisonitrile and the carbene IMes :C(NMesCH)2 with ring expansion and ring fusion, respectively. In particular, the tetracyclic structure formed with IMes displays zwitterionic character and absorption in the visible region. In contrast to the carbene IMes, the heavier carbenoids :Si(NDippCH)2 and :Ga(AmIm) with a two-coordinate donor atom afford spiro-type bicyclic compounds, which display four-coordinate geometry at silicon or gallium. (TD-)DFT calculations provide deeper insight into the mechanism of formation and the absorption properties of these new compounds.  相似文献   
34.
The challenge of calculating nonequilibrium entropy in polymeric liquids undergoing flow was addressed from the perspective of extending equilibrium thermodynamics to include internal variables that quantify the internal microstructure of chain-like macromolecules and then applying these principles to nonequilibrium conditions under the presumption of an evolution of quasie equilibrium states in which the requisite internal variables relax on different time scales. The nonequilibrium entropy can be determined at various levels of coarse-graining of the polymer chains by statistical expressions involving nonequilibrium distribution functions that depend on the type of flow and the flow strength. Using nonequilibrium molecular dynamics simulations of a linear, monodisperse, entangled C1000H2002 polyethylene melt, nonequilibrium entropy was calculated directly from the nonequilibrium distribution functions, as well as from their second moments, and also using the radial distribution function at various levels of coarse-graining of the constituent macromolecular chains. Surprisingly, all these different methods of calculating the nonequilibrium entropy provide consistent values under both planar Couette and planar elongational flows. Combining the nonequilibrium entropy with the internal energy allows determination of the Helmholtz free energy, which is used as a generating function of flow dynamics in nonequilibrium thermodynamic theory.  相似文献   
35.
36.
Provisioning buffer management mechanism is especially crucial in resource-constrained delay tolerant networks (DTNs) as maximum data delivery ratio with minimum overhead is expected in highly congested environments. However, most DTN protocols do not consider resource limitations (e.g., buffer, bandwidth) and hence, results in performance degradation. To strangle and mitigate the impact of frequent buffer overflows, this paper presents an adaptive and efficient buffer management scheme called size-aware drop (SAD) that strives to improve buffer utilization and avoid unnecessary message drops. To improve data delivery ratio, SAD exactly determines the requirement based on differential of newly arrived message(s) and available space. To vacate inevitable space from a congested buffer, SAD strives to avoid redundant message drops and deliberate to pick and discard most appropriate message(s) to minimize overhead. The performance of SAD is validated through extensive simulations in realistic environments (i.e., resource-constrained and congested) with different mobility models (i.e., Random Waypoint and disaster). Simulation results demonstrate the performance supremacy of SAD in terms of delivery probability and overhead ratio besides other metrics when compared to contemporary schemes based on Epidemic (DOA and DLA) and PRoPHET (SHLI and MOFO).  相似文献   
37.
38.
Research on Chemical Intermediates - An effective synthesis of anion-exchanged supported ionic liquid using magnetically separable nanoparticles and its catalytic effect on N-alkylation reactions...  相似文献   
39.
40.
A novel proaporphine-tryptamine dimer alkaloid, named phoebegrandine C 1, was isolated from the leaves of Phoebe grandis (Nees) Merr. Its structural elucidation was carried out using spectroscopic techniques, notably 2D NMR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号