首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109926篇
  免费   14936篇
  国内免费   12873篇
化学   54178篇
晶体学   1083篇
力学   5583篇
综合类   1174篇
数学   10103篇
物理学   30446篇
无线电   35168篇
  2024年   457篇
  2023年   2379篇
  2022年   3275篇
  2021年   3938篇
  2020年   3673篇
  2019年   3505篇
  2018年   3083篇
  2017年   3157篇
  2016年   4089篇
  2015年   4700篇
  2014年   5600篇
  2013年   7310篇
  2012年   8439篇
  2011年   8672篇
  2010年   6772篇
  2009年   6825篇
  2008年   7216篇
  2007年   6693篇
  2006年   6399篇
  2005年   5621篇
  2004年   4265篇
  2003年   3492篇
  2002年   3172篇
  2001年   2806篇
  2000年   2712篇
  1999年   2526篇
  1998年   2090篇
  1997年   1772篇
  1996年   1787篇
  1995年   1606篇
  1994年   1445篇
  1993年   1290篇
  1992年   1155篇
  1991年   950篇
  1990年   787篇
  1989年   660篇
  1988年   536篇
  1987年   454篇
  1986年   388篇
  1985年   370篇
  1984年   265篇
  1983年   232篇
  1982年   196篇
  1981年   151篇
  1980年   107篇
  1979年   73篇
  1978年   72篇
  1977年   67篇
  1976年   63篇
  1973年   70篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
993.
Zinc oxide nanoparticle is one of the nanomaterials people engaged most in their life and its health effect has been taken into concern. In this work, A549 cell line was used as cell model, and the cytotoxicity of zinc oxide nanoparticles was revealed to be concentration-dependent. Through the measurement of cellular proteome, much more differentially expressed proteins were observed after the cells being treated for 9 h than 24 h. Also, most of these proteins expressed in the pattern which showed a significant decrease after exposure to zinc oxide nanoparticles and then an increase at 24 h. Intracellular reactive oxygen species and glutathione determination indicated that high level of oxidative stress was presented in cell after treatment with zinc oxide nanoparticles for 9 h. It can be observed from western blot analysis that the expression of NF-κB p65, PNPase, and HSP90 rose significantly after 9 h of exposure. Thus, a deduction was reached that toxicity of nanoparticles consists both of particle toxicity and ion toxicity, and a long-time treatment may conceal the toxicity induced by particles. The conclusion we made highlighted the importance of exposure time in the study of nanoparticle toxicity and would provide a new perspective for studying toxicity mechanism of nanoparticles.  相似文献   
994.
Vertically aligned γ-AlOOH nanosheets (NSs) have been successfully fabricated on flexible Al foils via a solvothermal route without morphology-directing agents. Three different reaction temperature (25, 80, and 120 ?C) and time (30 min, 45 min, and 24 h) are discussed for the growth period, which efficiently tune the density and size of the γ-AlOOH NSs. Meanwhile, the growth speed of the nanosheets confirms that dominant growth stage is seen in the initial 45 min. Furthermore, the interlayer of the γ-AlOOH NSs displays an average height of 140 nm and superhydrophilicity. By dynamic adsorption, the assynthesized γ-AlOOH NSs exhibit an outstanding NH3 adsorption capacity of up to 146 mg/g and stably excellent regeneration for 5 cycles. The mechanism of NH3 adsorption on the in-plane of the γ-AlOOH NSs is explained by the Lewis acid/base theory. The H-bond interactions among the NH3 molecules and the edge groups (-OH) further improve the capture ability of the nanosheets.  相似文献   
995.
Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4–H2O–OH(TIMDP)–N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅ [H2O] ⋅ [ClO4]. As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 μs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.  相似文献   
996.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
997.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
998.
A series of novel sulfur-containing bent N-heteroacenes were constructed and characterized by NMR and UV/Vis spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. By introducing sulfur-containing groups (thio, sulfinyl, and sulfonyl) into bent azaacenes, their electronic delocalization was improved and frontier energy levels were modulated. The target products displayed tunable optical and electronic properties through altering the valence of sulfur and fused length of the azaacenes. For the first time, typical products were utilized as organic field effect transistor materials, affording promising results.  相似文献   
999.
Numerous protocols have been developed for the functionalization of aromatic substances. Among them, the strategy by which aromatic substrates are activated in situ to generate dearomatized intermediates is highly efficient but challenging, especially in the field of asymmetric catalysis. In this Concept article, the application of some well-established chiral Lewis base catalysis, including primary/secondary amines and N-heterocyclic carbenes, that can covalently form catalyst-tethered dearomatized ortho/para-quinodimethane species with diverse heteroaryl and aryl carbonyl substrates is summarized in a number of asymmetric cycloaddition and addition reactions with diverse reagents generally having electrophilic properties. As a result, a variety of enantioenriched aromatic products with higher molecular complexity are constructed effectively through a rearomatization process.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号