首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22964篇
  免费   4542篇
  国内免费   3942篇
化学   10710篇
晶体学   397篇
力学   914篇
综合类   264篇
数学   1912篇
物理学   6443篇
无线电   10808篇
  2024年   125篇
  2023年   639篇
  2022年   935篇
  2021年   1207篇
  2020年   1063篇
  2019年   1027篇
  2018年   886篇
  2017年   946篇
  2016年   1009篇
  2015年   1349篇
  2014年   1562篇
  2013年   1797篇
  2012年   2059篇
  2011年   2064篇
  2010年   1694篇
  2009年   1797篇
  2008年   1834篇
  2007年   1708篇
  2006年   1485篇
  2005年   1361篇
  2004年   889篇
  2003年   648篇
  2002年   629篇
  2001年   586篇
  2000年   505篇
  1999年   302篇
  1998年   217篇
  1997年   165篇
  1996年   139篇
  1995年   112篇
  1994年   93篇
  1993年   107篇
  1992年   78篇
  1991年   63篇
  1990年   47篇
  1989年   60篇
  1988年   43篇
  1987年   37篇
  1986年   38篇
  1985年   32篇
  1984年   24篇
  1983年   15篇
  1982年   11篇
  1981年   19篇
  1980年   6篇
  1979年   5篇
  1976年   4篇
  1971年   4篇
  1965年   3篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
951.
Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties.  相似文献   
952.
Low extracellular electron transfer performance is often a bottleneck in developing high‐performance bioelectrochemical systems. Herein, we show that the self‐assembly of graphene oxide and Shewanella oneidensis MR‐1 formed an electroactive, reduced‐graphene‐oxide‐hybridized, three‐dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact‐based extracellular electron transfer. This 3D electroactive biofilm delivered a 25‐fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74‐fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms.  相似文献   
953.
The chemical fixation of CO2 under mild reaction conditions is of significance from a sustainable chemistry viewpoint. Herein a CO2‐reactive protic ionic liquid (PIL), [HDBU+][TFE?], was designed by neutralization of the superbase 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) with a weak proton donor trifluoroethanol (TFE). As a bifunctional catalyst for simultaneously activating CO2 and the substrate, this PIL displayed excellent performance in catalyzing the reactions of CO2 with 2‐aminobenzonitriles at atmospheric pressure and room temperature, thus producing a series of quinazoline‐2,4(1H,3H)‐diones in excellent yields.  相似文献   
954.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   
955.
Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next‐generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high‐performance conducting wires that can self‐heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self‐healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self‐healable wire‐shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self‐healing.  相似文献   
956.
Crown ethers are small, cyclic polyethers that have found wide‐spread use in phase‐transfer catalysis and, to a certain degree, in protein chemistry. Crown ethers readily bind metallic and organic cations, including positively charged amino acid side chains. We elucidated the crystal structures of several protein‐crown ether co‐crystals grown in the presence of 18‐crown‐6. We then employed biophysical methods and molecular dynamics simulations to compare these complexes with the corresponding apoproteins and with similar complexes with ring‐shaped low‐molecular‐weight polyethylene glycols. Our studies show that crown ethers can modify protein surface behavior dramatically by stabilizing either intra‐ or intermolecular interactions. Consequently, we propose that crown ethers can be used to modulate a wide variety of protein surface behaviors, such as oligomerization, domain–domain interactions, stabilization in organic solvents, and crystallization.  相似文献   
957.
958.
N‐aryl‐substituted nitrones were employed as five‐atom coupling partners in the rhodium‐catalyzed cyclization with diynes. In this reaction, the nitrone moiety served as a directing group for the catalytic C? H activation of the N‐aryl ring. This formal [2+2+5] approach allows rapid access to bridged eight‐membered heterocycles with broad substrate scope. The results of this study may provide new insight into the chemistry of nitrones and find applications in the synthesis of other heterocycles.  相似文献   
959.
β‐Hydride abstraction is a well‐accepted elementary step for catalytic cycles in organometallic chemistry. It is usually anticipated that alkylpalladium halides containing syn‐β‐hydrogen atoms will undergo β‐hydride abstraction to afford the Heck‐type products. However, this study discloses that the above general knowledge is only conditionally correct. Our experimental results demonstrate that the reductive elimination of alkylhalides from alkylpalladium halides containing syn‐β‐hydrogen atoms may surpass the β‐hydride abstraction or even become exclusive in certain cases.  相似文献   
960.
A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle‐forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver—with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号