首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9377篇
  免费   508篇
  国内免费   54篇
化学   4292篇
晶体学   66篇
力学   246篇
数学   673篇
物理学   1662篇
无线电   3000篇
  2024年   11篇
  2023年   89篇
  2022年   117篇
  2021年   219篇
  2020年   181篇
  2019年   172篇
  2018年   135篇
  2017年   132篇
  2016年   270篇
  2015年   247篇
  2014年   319篇
  2013年   495篇
  2012年   584篇
  2011年   641篇
  2010年   383篇
  2009年   397篇
  2008年   599篇
  2007年   538篇
  2006年   488篇
  2005年   517篇
  2004年   403篇
  2003年   355篇
  2002年   340篇
  2001年   254篇
  2000年   259篇
  1999年   200篇
  1998年   192篇
  1997年   120篇
  1996年   136篇
  1995年   123篇
  1994年   126篇
  1993年   130篇
  1992年   90篇
  1991年   97篇
  1990年   73篇
  1989年   63篇
  1988年   50篇
  1987年   36篇
  1986年   36篇
  1985年   38篇
  1984年   36篇
  1983年   39篇
  1982年   34篇
  1981年   25篇
  1980年   25篇
  1979年   17篇
  1978年   17篇
  1977年   19篇
  1976年   16篇
  1974年   13篇
排序方式: 共有9939条查询结果,搜索用时 187 毫秒
971.
Controlled functionalization of carbon nanotubes (CNTs) through the use of cycloaddition reactions is described. By employing various cycloaddition reactions, a wide range of molecules could be coupled onto CNTs without disruption of the structural integrity as well as with a statistical distribution of functional groups onto the surface of the CNTs. The cycloaddition reactions represent an effective and tailored approach for preparing CNT-based advanced hybrid materials that would be useful for a wide range of applications from nanobiotechnology to nanoelectronics.  相似文献   
972.
Spintronic devices are very important for futuristic information technology. Suitable materials for such devices should have half-metallic properties so that only one spin passes through the device. In particular, organic half metals have the advantage that they may be used for flexible devices and have a long spin-coherence length. We predict that the one-dimensional infinite chromium porphyrin array, which we call Cr-PA(∞), shows half-metallic behavior when the spins on the chromium atoms are in a parallel alignment. Since the chromium atoms are separated by a large distance (>8 ?), the coupling between spins is small and thus their directions can be readily controlled by an external magnetic field. In the ferromagnetic state, the band gap for major spin electrons is 0.30 eV, while there is no band gap for the minor spin electrons, thus reflecting the half-metallic property. This unique property originates from the high spin state of Cr which results in the spin asymmetry of the conduction band in Cr-PA(∞). Electron transport of Cr-PA(1,2,3) is calculated with the nonequilibrium Green function technique in the presence of Au electrodes. It turned out that the spin-filtering ability appears from the dimeric Cr-PA(2). Thus, a new organometallic framework for designing a spin filter is proposed. Though many others have designed novel spintronic devices, none of them are realized due to the lack of a practical fabrication method at present. However, the porphyrin-based spintronic device provides a synthesizable framework.  相似文献   
973.
Aberrant protein aggregation causes numerous neurological diseases including Creutzfeldt-Jakob disease (CJD), but the aggregation mechanisms remain poorly understood. Here, we report AFM results on the formation pathways of β-oligomers and nonfibrillar aggregates from wild-type full-length recombinant human prion protein (WT) and an insertion mutant (10OR) with five additional octapeptide repeats linked to familial CJD. Upon partial denaturing, seeds consisting of 3-4 monomers quickly appeared. Oligomers of ~11-22 monomers then formed through direct interaction of seeds, rather than by subsequent monomer attachment. All larger aggregates formed through association of these β-oligomers. Although both WT and 10OR exhibited identical aggregation mechanisms, the latter oligomerized faster due to lower solubility and, hence, thermodynamic stability. This novel aggregation pathway has implications for prion diseases as well as others caused by protein aggregation.  相似文献   
974.
New material UCB-1 is synthesized via the delamination of zeolite precursor MCM-22 (P) at pH 9 using an aqueous solution of cetyltrimethylammonium bromide, tetrabutylammonium fluoride, and tetrabutylammonium chloride at 353 K. Characterization by powder X-ray diffraction, transmission electron microscopy, and nitrogen physisorption at 77 K indicates the same degree of delamination in UCB-1 as previously reported for delaminated zeolite precursors, which require a pH of greater than 13.5 and sonication in order to achieve exfoliation. UCB-1 consists of a high degree of structural integrity via (29)Si MAS NMR and Fourier transform infrared spectroscopies, and no detectable formation of amorphous silica phase via transmission electron microscopy. Porosimetry measurements demonstrate a lack of hysteresis in the N(2) adsorption/desorption isotherms and macroporosity in UCB-1. The new method is generalizable to a variety of Si:Al ratios and leads to delaminated zeolite precursor materials lacking amorphization.  相似文献   
975.
Skutterudites CoSb(3) with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.  相似文献   
976.
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size.  相似文献   
977.
Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ~1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (~0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical stability.  相似文献   
978.
An efficient synthesis of 4-arylcoumarins has been accomplished via Kostanecki reactions of 2-hydroxybenzophenones with acetic anhydride employing DBU at ambient temperature. Using the same strategy, several 2-acyloxybenzophenone derivatives were readily converted to 3,4-difunctionalized coumarins. This protocol offers a notable improvement in reaction conditions for coumarin synthesis and takes advantage of its synthetic capability, especially for highly functionalized 4-arylcoumarins with structural diversity.  相似文献   
979.
Three MIL-100 (Fe) samples differing in average crystal size (from 60-70 to >400 nm) have been synthesized by microwave heating using three HF/Fe(3+) ratios. Oxidation of diphenylmethane with tert-butylhydroperoxide (TBHP) and thiophenol with oxygen are catalyzed by three MIL-100 (Fe) samples with similar reaction rates regardless of its average particle size. In contrast, the activity of the three MIL-100 (Fe) samples for the oxidation of bulky triphenylmethane by TBHP largely depends on the average crystal size of the sample: the smaller the average particle size, the larger the initial reaction rate of triphenylmethane oxidation. These results show that diffusion limitation takes place on MOF catalysis depending on the substrate size and provides indirect evidence that these reactions take place inside the intracrystalline space of the porous catalysts.  相似文献   
980.
A copper(II)-hydroperoxo complex, [Cu(Me(6)-tren)(OOH)](+) (2), and a copper(ii)-cumylperoxo complex, [Cu(Me(6)-tren)(OOC(CH(3))(2)Ph)](+) (3), were synthesized by reacting [Cu(Me(6)-tren)(CH(3)CN)](2+) (1) with H(2)O(2) and cumyl-OOH, respectively, in the presence of triethylamine. These intermediates, 2 and 3, were successfully characterized by various physicochemical methods such as UV-vis, ESI-MS, resonance Raman and EPR spectroscopies, leading us to propose structures of the Cu(II)-OOR species with a trigonal-bipyramidal geometry. Density functional theory (DFT) calculations provided geometric and electronic configurations of 2 and 3, showing trigonal bipyramidal copper(II)-OOR geometries. These copper(II)-hydroperoxo and -cumylperoxo complexes were inactive in electrophilic and nucleophilic oxidation reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号