首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   26篇
化学   153篇
晶体学   1篇
力学   8篇
数学   8篇
物理学   45篇
无线电   107篇
  2023年   3篇
  2022年   9篇
  2021年   5篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   15篇
  2015年   5篇
  2014年   17篇
  2013年   17篇
  2012年   21篇
  2011年   15篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   20篇
  2003年   9篇
  2002年   16篇
  2001年   6篇
  2000年   13篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有322条查询结果,搜索用时 0 毫秒
61.
The reaction of [(domppp) Pd (OAc)2] [domppp = 1,3‐bis (di‐o‐methoxyphenylphosphino)propane] and imidazolium‐functionalized carboxylic acids containing various anions (Br?, PF6?, SbF6? and BF4?) resulted in the formation of nano‐sized Pd (II) aggregates under template‐free conditions. The rate of formation of aggregates can be modulated by changing the anion, affecting the rate of polymerization of CO and olefins without fouling. Herein, we describe the analysis of Pd (II) catalysts by dynamic light scattering, atomic force microscopy, X‐ray photoelectron spectroscopy and X‐ray crystallography, and co‐ and terpolymerization results including the catalytic activity, and bulk density and molecular weight of polymers.  相似文献   
62.
Abstract

In the course of our continuing investigation of bioactive secondary metabolites from marine-derived fungal strains, a racemate of a novel diphenolic derivative named (±)-tylopilusin D (1) along with ten previously known secondary metabolites (2–11) were isolated from a marine-derived fungal strain Aspergillus sp. SF-5929. Their structures were elucidated mainly by analysis of NMR and MS data. In addition, the inhibitory effects of the isolated compounds against protein tyrosine phosphatase 1B (PTP1B) activity were evaluated, and compounds 1, 2, and 5–7 inhibited PTP1B activity with IC50 values ranging from 3.3 to 8.1?µM. Kinetics studies suggested that compounds 1, 2, and 5 had noncompetitive inhibitory effects against PTP1B.  相似文献   
63.
64.
In this letter we introduce our system load model for the orthogonal frequency division multiple access (OFDMA) network. We formulate the requirements to the system load model and present its definition. The system load model comprises the uplink load, the downlink load, the sector load, and the network load. We describe our approach to combine the time-frequency and power shared system resources in the OFDMA network.  相似文献   
65.
We present a simulation method that can create accurate virtual models of hand with arbitrarily curved surfaces and perform distortion-free MCNPX simulations. Generally, MCNPX simulations of objects with arbitrarily curved surfaces are performed through voxelization. In this study, a polygon model is tetrahedralized by TetGen for the construction of the MCNPX geometry to be distortion-free. Then, dose estimation was successfully performed after converting the virtual model into an MCNPX input. A voxelized model was constructed for comparison purposes. The dose estimation functions of the two models were found to be similar, showing a similar amount of computing time by using the mesh tally option with 2e7 histories.  相似文献   
66.
Biomolecule/graphene van der Waals heterojunction provides a generic platform for designing high‐performance, flexible, and scalable optoelectronics. A key challenge is, in controllable attachment, the biomolecules to form a desired interfacial electronic structure for a high‐efficiency optoelectronic process of photoabsorption, exciton dissociation into photocarriers, carrier transfer, and transport. Here, it is shown that a polarity‐controlled attachment of the Cytochrome c (Cyt c) biomolecules can be achieved on the channel of graphene field effect transistors (GFET). High‐efficiency charge transfer across the formed Cyt c/graphene interface is demonstrated when Cyt c attaches with positively charged side to GFET as predicted by molecular dynamics simulation and confirmed experimentally. This Cyt c/GFET van der Waals heterojunction nanohybrid photodetector exhibits a spectral photoresponsivity resembling the absorption spectrum of the Cyt c, confirming the role of Cty c as the photosensitizer in the device. The high visible photoresponsivity up to 7.57 × 104 A W?1 can be attributed to the high photoconductive gain in exceeding 105 facilitated by the high carrier mobility in graphene. This result therefore demonstrates a viable approach in synthesis of the biomolecule/graphene van der Waals heterojunction optoelectronics using polarity‐controlled biomolecule attachment, which can be expanded for on‐chip printing of high‐performance molecular optoelectronics.  相似文献   
67.
With the growth of the scale of the market for Internet banking and e-commerce, the number of Internet-based financial markets has been increasing. Meanwhile, hacking incidents continuously affect Internet-banking services. For this reason, a countermeasure is required to improve the security of the online identification process. The current security and authentication mechanisms applied to financial services, such as Internet banking services for 5G-enabled IoT, do not ensure security. In this paper, a transaction-linkage technique with which the designated terminal is combined is proposed to solve this fundamental problem. The technique improves the security of online identification mechanisms because it is possible to counteract all of the existing security threats. The proposed technique supports mutual authentication and is safe from eavesdropping attacks, replay attacks, spoofing attacks, and service-denial attacks. Moreover, the technique supports non-repudiation by storing the transaction history in a transaction-linkage device. We believe that the security of Internet-banking services for 5G-enabled IoT will be increased through the utilization of the proposed technique.  相似文献   
68.
The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was < or = 20 A and the thickness increased almost linearly with increasing coverage to 42 A. For Ni(II)-IDA, the thickness at low coverage was approximately 38 A and increased gradually with coverage to 47 A. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA.  相似文献   
69.
We present the effects of In4Se3 addition on thermoelectric properties of n-type Bi2Te2.7Se0.3. In this study, polycrystalline (In4Se3) x -(Bi2Te2.7Se0.3)1?x pellets were prepared by mechanical alloying followed by spark plasma sintering (SPS). The thermoelectric properties such as Seebeck coefficient and electrical and thermal conductivities were measured in the temperature range of 300 K to 500 K. Addition of In4Se3 into Bi2Te2.7Se0.3 resulted in segregation of In4Se3 phase within Bi2Te2.7Se0.3 matrix. The Seebeck coefficient of the (In4Se3) x -(Bi2Te2.7Se0.3)1?x samples exhibited lower values compared with that of pure Bi2Te2.7Se0.3 phase. This reduction of Seebeck coefficient in n-type (In4Se3) x -(Bi2Te2.7Se0.3)1?x is attributed to the formation of unwanted p-type phases by interdiffusion through the interface between (In4Se3) x and (Bi2Te2.7Se0.3)1?x as well as consequently formed Te-deficient matrix. However, the decrease in electrical resistivity and thermal conductivity with addition of In4Se3 leads to an enhanced thermoelectric figure of merit (ZT) at a temperature range over 450 K: a maximum ZT of 1.0 is achieved for the n-type (In4Se3)0.03-(Bi2Te2.7Se0.3)0.97 sample at 500 K.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号