首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   27篇
化学   150篇
晶体学   1篇
力学   8篇
数学   8篇
物理学   45篇
无线电   107篇
  2023年   3篇
  2022年   6篇
  2021年   5篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   15篇
  2015年   5篇
  2014年   17篇
  2013年   17篇
  2012年   21篇
  2011年   15篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   15篇
  2006年   17篇
  2005年   18篇
  2004年   20篇
  2003年   9篇
  2002年   16篇
  2001年   6篇
  2000年   13篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有319条查询结果,搜索用时 500 毫秒
101.
Non-conductive adhesives (NCA), widely used in display packaging and fine pitch flip chip packaging technology, have been recommended as one of the most suitable interconnection materials for flip-chip chip size packages (CSPs) due to the advantages such as easier processing, good electrical performance, lower cost, and low temperature processing. Flip chip assembly using modified NCA materials with material property optimization such as CTEs and modulus by loading optimized content of nonconductive fillers for the good electrical, mechanical and reliability characteristics, can enable wide application of NCA materials for fine pitch first level interconnection in the flip chip CSP applications. In this paper, we have developed film type NCA materials for flip chip assembly on organic substrates. NCAs are generally mixture of epoxy polymer resin without any fillers, and have high CTE values un-like conventional underfill materials used to enhance thermal cycling reliability of solder flip chip assembly on organic boards. In order to reduce thermal and mechanical stress and strain induced by CTE mismatch between a chip and organic substrate, the CTE of NCAs was optimized by filler content. The flip chip CSP assembly using modified NCA showed high reliability in various environmental tests, such as thermal cycling test (-55/spl deg/C/+160/spl deg/C, 1000 cycle), high temperature humidity test (85/spl deg/C/85%RH, 1000 h) and high temperature storage test (125/spl deg/C, dry condition). The material properties of NCA such as the curing profile, the thermal expansion, the storage modulus and adhesion were also investigated as a function of filler content.  相似文献   
102.
Recent exclusive coincidence measurements of non-mesonic weak decays (NMWD) reported for the ratio of the partial decay width of neutron-induced-to-proton-induced NMWD, Γnp , values of 0.45±0.11±0.03 and 0.51±0.13±0.04 for 5lam and 12 Λ C , respectively. These observations agree well with the improved theoretical Γnp ratios which are in the range of 0.3-0.7. It appears that the long-standing discrepancy between the experimental and theoretical values of Γnp has finally been solved. However, when compared to the results of intra-nuclear cascade (INC) calculations, the observed numbers of both single nucleons and coincident nucleon pairs are strongly quenched. The quenching of the proton yield observed previously has been interpreted as an increase of the Γnp ratio. On the other hand, significant contributions from the two-nucleon-induced three-body process ΛNNnNN are predicted. Indeed, the angular correlation of the emitted nucleon pairs in the NMWD of 12 Λ C showed not only decay events in back-to-back kinematics, but also events with non-back-to-back kinematics. In this paper we show that the difficulties to extract the correct Γnp ratio from the proton spectra is related to the three-body weak-interaction process which strongly quenches the nucleon yields.  相似文献   
103.
In this paper, thermomechanical and rheological properties of nonconductive pastes (NCPs) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermomechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature (T/sub g/) and storage modulus at room temperature became higher while coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermomechanical properties such as modulus, CTE, and T/sub g/. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected and used as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.  相似文献   
104.
The interfacial structure and properties of immiscible deuterated polystyrene (dPS)/epoxy bilayer films were investigated with neutron reflectivity as functions of the composition of the epoxy layer, the thickness of the dPS layer, and the annealing time. We have found that the interfacial width and its growth rate depend strongly on the compositions of the epoxy layer but only weakly on the thickness of the dPS layer. The effect of the resin/crosslinker composition on the interfacial width and its growth rate is likely due to the different near‐surface structures that result for different epoxy stoichiometries. For an ultra‐thin dPS film (thickness = 2Rg), the data suggest a slight suppression of the growth of the interfacial width that could be due to confinement effects for the long‐chain molecules such as have been previously reported for a thickness of less than approximately 4Rg, where Rg is the radius of gyration of polymer molecules. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2653–2660, 2002  相似文献   
105.
106.
This paper proposes a new model as a framework for forecasting demand and technological substitution, which can accommodate different patterns of technological change. This model, which we named, “Adaptive Diffusion Model,” is formalized from a conceptual framework that incorporates several underlying factors determining the market demand for technological products. The formulation of this model is given in terms of a period analysis to improve its explanatory power for dynamic processes in the real world, and is described as a continuous form which approximates a discrete derivation of the model. In order to illustrate the applicability and generality of this model, time-series data of the diffusion rates for some typical products in electronics and telecommunications market have been empirically tested. The results show that the model has higher explanatory power than any other existing model for all the products tested in our study. It has been found that this model can provide a framework which is sufficiently robust in forecasting demand and innovation diffusion for various technological products.  相似文献   
107.
The universal mobile telecommunications system (UMTS) will consist of space UMTS (S-UMTS) and terrestrial UMTS (T-UMTS) components. An algorithm for predicting the traffic capacity in terms of the number of subscribers for the satellite component of UMTS is presented. The algorithm takes into account the takeup characteristics of new products, the growth of gross domestic product (GDP), the projection of population, the tariff of the service, and price fall over the forecast period. The predicted traffic is used to generate a traffic grid in terms of Erlang of dimension 36×72 in steps of 5° in both the latitude and longitude directions. The traffic grid is used to evaluate the performance of a dynamic channel allocation (DCA) technique as, well as a fixed channel allocation (FCA) technique. Both channel allocation techniques have been considered with the queuing of handover (QH) requests. In order to compare the respective techniques' performance, a low-earth orbit mobile satellite system (LEO-MSS) mobility model is developed to take into account the effect of satellites' motion during interbeam handovers. A theoretical model for obtaining the values of blocking probabilities for low-traffic loads is presented. Finally, the performance of the DCA-QH technique is compared with the FCA-QH technique under suitably defined traffic and mobility conditions  相似文献   
108.
Anisotropic conductive film (ACF) has been used as interconnect material for flat-panel display module packages, such as liquid crystal displays (LCDs) in the technologies of tape automated bonding (TAB), chip-on-glass (COG), chip-on-film (COF), and chip-on-board (COB). Among them, COF is a relatively new technology after TAB and COG bonding, and its requirement for ACF becomes more stringent because of the need of high adhesion and fine-pitch interconnection. To meet these demands, strong interfacial adhesion between the ACF, substrate, and chip is a major issue. We have developed a multilayered ACF that has functional layers on both sides of a conventional ACF layer to improve the wetting properties of the resin on two-layer flex for better interface adhesion and to control the flow of conductive particles during thermocompression bonding and the resulting reliability of the interconnection using ACF. To investigate the enhancement of electrical properties and reliability of multilayered ACF in COF assemblies, we evaluated the performance in contact resistance and adhesion strength of a multilayered ACF and single-layered ACF under various environmental tests, such as a thermal cycling test (−55°C/+160°C, 1,000 cycles), a high-temperature humidity test (85°C/85% RH, 1,000 h), and a high-temperature storage test (150°C, 1,000 h). The contact resistance of the multilayered ACF joint was in an acceptable range of around a 10% increase of the initial value during the 85°C/85% RH test compared with the single-layered ACF because of the stronger moisture resistance of the multilayered ACF and flex substrate. The multilayered ACF has better adhesion properties compared with the conventional single-layered ACF during the 85°C/85% RH test because of the enhancement of the wetting to the surface of the polymide (PI) flex substrate with an adhesion-promoting nonconductive film (NCF) layer of multilayered ACF. The new ACF of the multilayered structure was successfully demonstrated in a fine-pitch COF module with a two-layer flex substrate.  相似文献   
109.
A compact V-band 2-bit reflection-type MEMS phase shifter   总被引:6,自引:0,他引:6  
Air-gap overlay CPW couplers and low-loss series metal-to-metal contact microelectromechanical system (MEMS) switches have been employed to reduce the loss of reflection-type MEMS phase shifters at V-band. Phase shift is obtained by changing the lengths of the open-ended stubs using series MEMS switches. A 2-bit [135] reflection-type MEMS phase shifter showed an average insertion loss of 4 dB with return loss better than 11.7 dB from 50 to 70 GHz. The chip is very compact with a chip size as small as 1.5 mm /spl times/ 2.1 mm.  相似文献   
110.
In this paper, we discuss recovery schemes for errors occurring when image data encoded with variable length coding (VLC) is transmitted through additive white Gaussian noise (AWGN) and multiple–access interference in direct sequence code division multiple access (DS/CDMA) systems. VLC such as JPEG is so sensitive to channel errors that severe degradation in decoded images occurs even if only one or two bits have errors. This is due to the loss of synchronization at the image decoder. We propose a resynchronization scheme using a power allocation method in wireless DS/CDMA transmission. Through simulation, we know that the proposed method has a more robust resynchronization capability and higher objective and subjective quality than the conventional method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号