首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9673篇
  免费   1395篇
  国内免费   1108篇
化学   5228篇
晶体学   86篇
力学   437篇
综合类   57篇
数学   888篇
物理学   2826篇
无线电   2654篇
  2024年   43篇
  2023年   281篇
  2022年   287篇
  2021年   373篇
  2020年   383篇
  2019年   349篇
  2018年   327篇
  2017年   353篇
  2016年   386篇
  2015年   427篇
  2014年   539篇
  2013年   702篇
  2012年   803篇
  2011年   834篇
  2010年   570篇
  2009年   588篇
  2008年   646篇
  2007年   574篇
  2006年   571篇
  2005年   456篇
  2004年   311篇
  2003年   278篇
  2002年   269篇
  2001年   225篇
  2000年   210篇
  1999年   206篇
  1998年   182篇
  1997年   142篇
  1996年   165篇
  1995年   138篇
  1994年   90篇
  1993年   80篇
  1992年   78篇
  1991年   74篇
  1990年   50篇
  1989年   31篇
  1988年   24篇
  1987年   21篇
  1986年   19篇
  1985年   17篇
  1984年   8篇
  1983年   11篇
  1982年   10篇
  1981年   14篇
  1980年   4篇
  1979年   4篇
  1977年   3篇
  1957年   2篇
  1929年   2篇
  1926年   2篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
101.
在添加了15%Li_2O的NdMO_3(M=Cr、Mn、Fe、Co、Ni)上进行了甲烷氧化偶联(OCM)反应研究.通过改变反应气中CH_4:O_2浓度比,在氧化态和“脱氧态”催化剂上的CH_4脉冲反应,探讨了表面吸附氧和晶格氧在OCM反应中的作用以及NdMO_3中不同金属离子(M)对OCM反应活性的影响等.  相似文献   
102.
过渡金属醋酸盐与邻菲咯啉的室温固相配位化学反应研究   总被引:1,自引:0,他引:1  
本文研究了C0(Ac)2·4H2O,Ni(Ac)24H2O,Cu(Ac)2·H2O,Zn(Ac)2·2H2O与邻菲咯啉在室温(20土2℃)条件下的固相配位化学反应,讨论了反应物分子结构对固相反应的影响,通过固相反应一步合成了相应的配合物,经元素分析、红外光谱,X-射线衍射测定,确定了固相合成产物的组成。  相似文献   
103.
An ion chromatographic method is described for the purpose of quality control in the process of monochloroacetic acid production. Using 2.5 mM NaOH–10% methanol as eluent, the simultaneous determination of acetic acid, monochloroacetic acid, dichloroacetic acid, and Cl was obtained in a single run. Monochloroacetic acid and dichloroacetic acid showed good linearity in the range 0.1–20 and 0.15–20 μg/ml and correlation coefficients were 0.9999 and 0.9998, respectively. The detection limits (signal-to-noise ratio 3:1) of monochloroacetic acid and dichloroacetic acid were 17 and 25 ng/ml. This simple, sensitive, and time-saving method can be applied for composition analysis in acetic acid chlorination production.  相似文献   
104.
We report on a disposable microdevice suitable for sandwich-type electrochemiluminescence (ECL) detection of DNA. The method is making use of CdTe quantum dots functionalized with hierarchical nanoporous PtFe (CdTe@PtFe) nanoparticles and with magnetic graphene nanosheets. The latter were selected as carriers for the capture DNA due to their excellent biomagnetic separation capability and electrical properties. The CdTe@PtFe nanoparticles were used to label the signal DNA which resulted in distinctly enhanced ECL owing to the large specific surface area and good electrical conductivity of the PtFe alloy. A DNA sensor was constructed on a disk-shaped indium tin oxide electrode that was fabricated via etching. Under optimal conditions, the biosensor responds linearly to DNA in the 0.02 fM to 5000 fM concentration range, with a detection limit as low as 15 aM. The electrode is regenerable. The method displays excellent specificity, extremely good sensitivity, and is highly reproducible.
Figure
CdTe quantum dots functionalized hierarchical nanoporous PtFe alloy (CdTe@PtFe) and magnetic graphene nanosheet (MGN) were applied for sensitive sandwich-type electrochemiluminescence DNA detection based on a disposable microdevice. The method displays excellent specificity, extremely good sensitivity, and is highly reproducible.  相似文献   
105.
Germanium‐based nanomaterials have emerged as important candidates for next‐generation energy‐storage devices owing to their unique chemical and physical properties. In this Review, we provide a review of the current state‐of‐the‐art in germanium‐based materials design, synthesis, processing, and application in battery technology. The most recent advances in the area of Ge‐based nanocomposite electrode materials and electrolytes for solid‐state batteries are summarized. The limitations of Ge‐based materials for energy‐storage applications are discussed, and potential research directions are also presented with an emphasis on commercial products and theoretical investigations.  相似文献   
106.
In this work, an electrochemical method for the determination of malachite green was developed on the basis of enhancement effect of an anionic surfactant: sodium dodecyl benzene sulfonate. It is found that the oxidation peak current of malachite green at carbon paste electrode significantly increases in the presence of low concentration of sodium dodecyl benzene sulfonate in pH 6.5 phosphate buffer, suggesting that sodium dodecyl benzene sulfonate shows obvious enhancement effect for the determination of malachite green. The experimental parameters, such as supporting electrolyte, kind of surfactant, concentration of sodium dodecyl benzene sulfonate and accumulation time, were optimized, and then a sensitive and convenient electrochemical method was proposed for the determination of malachite green. The oxidation peak current is proportional to the concentration of malachite green over the range from 8.0 × 10−9 to 5.0 × 10−7 mol l−1, and the detection limit is 4.0 × 10−9 mol l−1 after 5 min of accumulation. Finally, this new method was successfully employed to detect malachite green in fish samples. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 8, pp. 1019–1024. The text was submitted by the authors in English.  相似文献   
107.
Effect of pH on the aluminum chloride hydrolysis at low concentration was investigated in detail by electrospray ionization (ESI) mass spectrometry. In particular, formation and decomposition processes of polymeric aluminum species were discussed. When coagulant AlCl(3) was diluted to normal coagulant dose (1.5 x 10(-4) mol/L), hydrolysis occurred immediately. Monomeric and dimeric aluminum species were the main products at pH 4.0. With pH increasing, hydrolysis and polymerization processes were accelerated. Monomeric and dimeric aluminum species hydrolyzed and polymerized into small polymeric aluminum species (Al(3)-Al(5) species) at pH 4.8. Through aggregation and self-assembly, the small polymeric aluminum species polymerized into median polymeric species (Al(6)-Al(10) species) at pH 5.0. In the same way, small and median polymeric aluminum species further aggregated into large polymeric species (Al(11)-Al(21) species). When pH was up to 5.8, metastable median and large polymers species decomposed into small aluminum species, then further disaggregated into dimeric species. With pH increased to 6.4, majority of aluminum species formed to Al(OH)(3) amorphous flocs. Accordingly, coagulant hydrolysis mechanism from polymerization toward decomposition was proposed. Furthermore, formation and decomposition of polymeric aluminum species in AlCl(3) solution followed the "Core-links" model, while those of Keggin-Al(13) species in polyaluminum solution was based on the "Cage-like" model.  相似文献   
108.
The phosphino-phosphonium cations of the form [R3PPR′2]+ are labile and provide access to the constituent Lewis acidic and Lewis basic fragments. This permits frustrated Lewis pair-type addition reactions to alkynes, affording unprecedented phosphino-phosphination reactions and giving cations of the form [cis-R3PCHC(R′′)PR′2]+. This reactivity is further adapted to prepare several examples of a rare class of dissymmetric cis-olefin-linked bidentate phosphines.  相似文献   
109.
Non-metallic materials have emerged as a new family of active substrates for surface-enhanced Raman scattering (SERS), with unique advantages over their metal counterparts. However, owing to their inefficient interaction with the incident wavelength, the Raman enhancement achieved with non-metallic materials is considerably lower with respect to the metallic ones. Herein, we propose colourful semiconductor-based SERS substrates for the first time by utilizing a Fabry-Pérot cavity, which realize a large freedom in manipulating light. Owing to the delicate adjustment of the absorption in terms of both frequency and intensity, resonant absorption can be achieved with a variety of non-metal SERS substrates, with the sensitivity further enhanced by ≈100 times. As a typical example, by introducing a Fabry-Pérot-type substrate fabricated with SiO2/Si, a rather low detection limit of 10−16 M for the SARS-CoV-2S protein is achieved on SnS2. This study provides a realistic strategy for increasing SERS sensitivity when semiconductors are employed as SERS substrates.  相似文献   
110.
The design of pore structure is the key factor for the performance of porous carbon spheres.In this wo rk,novel micron-sized colloidal crystal microspheres consisting of fibrous silica(F-SiO_2) nanoparticles are firstly prepared by water-evapo ration-induced self-assembly of F-SiO_2 nanoparticles in the droplets of an inverse emulsion system to be used as sacrificial templates.Acrylonitrile(AN) was infiltrated in the voids of the F-SiO_2 colloidal crystal microspheres,and in-situ induced by ~(60)Co y-ray to polymerize into polyacrylonitrile(PAN).After the PAN-infiltrated F-SiO_2 colloidal crystal microspheres were carbonized and etched with HF solution,novel micron-sized inverse-opal N-doped carbon(IO-NC) microspheres consisting of hollow carbon nanoparticles with a hierarchical macro/meso-porous inner surface were obtained.The IO-NC microspheres have a specific surface area as high as 266.4 m~2/g and a molar ratio of C/N of 5.They have a good dispersibility in water,and show a high adsorption capacity towards rhodamine B(RhB) up to 137.28 mg/(g microsphe re).This work offers a way to obtain novel micron-sized hierarchical macro/meso-porous N-doped carbon microspheres,which opens a new idea to prepare high-performance hierarchical porous carbon materials.  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号