首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   2篇
化学   1篇
力学   9篇
数学   3篇
物理学   17篇
无线电   21篇
  2022年   1篇
  2021年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   7篇
  2010年   1篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
Attilio Frangi 《PAMM》2008,8(1):10007-10010
The evaluation of gas dissipation occurring in inertial polysilicon MEMS is addressed focusing the attention on the free–molecule flow. In this regime, which is very often of interest for industrial applications, collisions between molecules can be neglected and the momentum transfer to the moving shuttle can be easily computed. Since the surfaces of silicon MEMS are generally very rough, a complete diffusion model is adopted to describe the wall–molecule interaction. A Boundary Integral Equation approach is proposed and it is shown that the introduction of the key assumption of small perturbations is crucial in the development of a robust and fast numerical tool. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
22.
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.  相似文献   
23.
We present a convergence analysis of the spectral Lagrange-Galerkinmethod for mixed periodic/non-periodic convection-diffusionproblems. The scheme is unconditionally stable, independentof the diffusion coefficient, even in the case when numericalquadrature is used. The theoretical predictions are illustratedby a series of numerical experiments. For the periodic case,our results present a significant improvement on those givenby Süli & Ware (1991) SIAM J. Numer.Anal.28, 423-445).  相似文献   
24.
25.
A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also discussed. Three variants of backprojection reconstruction are studied: basic (unweighted), weighted and exponential backprojection. The results of error propagation theory have been compared with those obtained from simulated and experimental data. This comparison shows that the approach provides a good estimate of the reconstruction error variance. It is argued that the reconstruction error in EIT images obtained via backprojection can be approximately modeled as a spatially nonstationary Gaussian distribution. This methodology allows us to develop a spatial characterization of the reconstruction error in EIT images.  相似文献   
26.
27.

This paper investigates model-order reduction methods for geometrically nonlinear structures. The parametrisation method of invariant manifolds is used and adapted to the case of mechanical systems in oscillatory form expressed in the physical basis, so that the technique is directly applicable to mechanical problems discretised by the finite element method. Two nonlinear mappings, respectively related to displacement and velocity, are introduced, and the link between the two is made explicit at arbitrary order of expansion, under the assumption that the damping matrix is diagonalised by the conservative linear eigenvectors. The same development is performed on the reduced-order dynamics which is computed at generic order following different styles of parametrisation. More specifically, three different styles are introduced and commented: the graph style, the complex normal form style and the real normal form style. These developments allow making better connections with earlier works using these parametrisation methods. The technique is then applied to three different examples. A clamped-clamped arch with increasing curvature is first used to show an example of a system with a softening behaviour turning to hardening at larger amplitudes, which can be replicated with a single mode reduction. Secondly, the case of a cantilever beam is investigated. It is shown that invariant manifold of the first mode shows a folding point at large amplitudes. This exemplifies the failure of the graph style due to the folding point on a real structure, whereas the normal form style is able to pass over the folding. Finally, a MEMS (Micro Electro Mechanical System) micromirror undergoing large rotations is used to show the importance of using high-order expansions on an industrial example.

  相似文献   
28.
29.
30.
Three-dimensional (3-D) imaging of the heart is a rapidly developing area of research in medical imaging. Advances in hardware and methods for fast spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and research on cardiovascular diseases. In the last few years, many approaches have been proposed to analyze images and extract parameters of cardiac shape and function from a variety of cardiac imaging modalities. In particular, techniques based on spatio-temporal geometric models have received considerable attention. This paper surveys the literature of two decades of research on cardiac modeling. The contribution of the paper is three-fold: 1) to serve as a tutorial of the field for both clinicians and technologists, 2) to provide an extensive account of modeling techniques in a comprehensive and systematic manner, and 3) to critically review these approaches in terms of their performance and degree of clinical evaluation with respect to the final goal of cardiac functional analysis. From this review it is concluded that whereas 3-D model-based approaches have the capability to improve the diagnostic value of cardiac images, issues as robustness, 3-D interaction, computational complexity and clinical validation still require significant attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号