首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10333篇
  免费   1149篇
  国内免费   675篇
化学   5550篇
晶体学   97篇
力学   407篇
综合类   47篇
数学   696篇
物理学   2394篇
无线电   2966篇
  2024年   19篇
  2023年   216篇
  2022年   230篇
  2021年   426篇
  2020年   368篇
  2019年   358篇
  2018年   284篇
  2017年   294篇
  2016年   408篇
  2015年   387篇
  2014年   469篇
  2013年   678篇
  2012年   832篇
  2011年   834篇
  2010年   608篇
  2009年   583篇
  2008年   708篇
  2007年   594篇
  2006年   557篇
  2005年   510篇
  2004年   428篇
  2003年   371篇
  2002年   352篇
  2001年   242篇
  2000年   198篇
  1999年   168篇
  1998年   154篇
  1997年   133篇
  1996年   126篇
  1995年   114篇
  1994年   81篇
  1993年   73篇
  1992年   67篇
  1991年   64篇
  1990年   35篇
  1989年   26篇
  1988年   31篇
  1987年   20篇
  1986年   17篇
  1985年   19篇
  1984年   14篇
  1983年   10篇
  1982年   11篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1973年   4篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
201.
Bio-ink has gradually transited from ionic-crosslinking to photocrosslinking due to photocurable bio-hydrogel having good formability and biocompatibility. It is very important to understand and quantify the crosslinking process of photocurable hydrogels, otherwise, bioprinting cannot be standardized and scalable. However, there are few studies on hydrogel formation process and its photocrosslinking behavior which cannot be accurately predicted. Herein, the photoinitiated radical polymerized bio-hydrogels are taken as an example to establish the formation theory. Three typical crosslinking reactions are first distinguished. It is further proposed that not all double-bonds consumed during crosslinking contributeequally to polymerization. Then the concept of effective double-bond conversion (EDBC) is elicited. Deriving from EDBC, several important formation indices are defined. According to theory, it is predicted that slow crosslinking can improve the crosslinking degree. Furthermore, based on the slow crosslinking effect, a new strategy of projection-based 3D printing (PBP) is proposed, which significantly improved printing quality and efficiency. Overall, this work will fill the gap in hydrogel's formation theory, making it possible to accurately quantify the formation process.  相似文献   
202.
Two novel transition metal-doped tungsten bronze oxides, Pb2.15Li0.85Nb4.85Ti0.15O15 (PLNT) and Pb2.15Li0.55Nb4.85W0.15O15 (PLNW), are synthesized by high-temperature solid-state reactions. The Rietveld method using the high-resolution synchrotron radiation indicates that PLNT and PLNW crystallize in the orthorhombic polar noncentrosymmetric space group, Pmn21 (no. 31). As a class of tungsten bronze oxide, PLNT and PLNW retain a unique rigid framework composed of d0 transition metal cation (Ti4+ or W6+)-doped highly distorted NbO6 octahedra along with the subsequently generated Pb/LiO12 and PbO15 polyhedra. Interestingly, the d0 transition metal-doped tungsten bronzes, PLNT and PLNW, exhibit extremely large second-harmonic generation (SHG) responses of 56 and 67 × KH2PO4, respectively. The observed immeasurably strong SHG is mainly attributed to a net polarization originating from the alignment of highly distorted NbO6 octahedra with doped transition metals in the frameworks. It is believed that doping transition metal cations at the B-site of the tungsten bronze structures should be an innovative strategy to develop novel high-performance nonlinear optical materials.  相似文献   
203.
High current carrying capacity and high conductivity are two important indicators for materials used in microscale electronics and inverters. However, it is challenging to obtain high conductivity and high current carrying capacity at the same time since high conductivity requires a weakly bonded system to provide free electrons, while high current carrying capacity requires a strongly bonded system. In this paper, CuI@SWCNT networks by filling the single-walled carbon nanotubes (SWCNTs) with CuI is ingeniously prepared. CuI@SWCNT shows good stability due to the confinement protection of SWCNTs. Through the host-guest hybridization, CuI@SWCNT networks exhibit a current carrying capacity of 2.04 × 107 A cm−2 and a conductivity of 31.67 kS m−1. Their current carrying capacity and conductivity are significantly improved compared with SWCNT. The Kelvin probe force microscopy measurements show a drop of surface potential energy after SWCNT filled with CuI, indicating that the CuI guest molecules regulate the position of the Fermi level of SWCNTs, increasing carrier concentration, achieving high conductivity and high current carrying capacity. This study offers ideas and solutions for the regulation of high-performance carbon tube networks, which hold great promise for future applications in carbon-based electronic devices.  相似文献   
204.
随着星地融合网络(ISTNs)的快速发展,大量的传感器和无线设备都有无线服务的接入需求,从而对星地融合网络的频谱效率和服务质量提出了新的挑战。不同于传统的正交多址接入技术,非正交多址接入(NOMA)技术可在相同的频率下传输不同用户的信号,其被认作为提高星地融合网络频谱效率的有效方法,从而被广泛研究。目前,针对NOMA和星地融合网络的研究大多都是在理想条件下进行的,由此该文研究更加实际的情况,即在非完美串行干扰消除(SIC)、信道估计误差和同频干扰下,对星地融合网络的性能进行研究。该文在假设卫星端和地面端均采用多天线的前提下,推导了系统遍历容量的闭式表达式,验证了非完美条件对于系统性能的影响。同时蒙特卡罗仿真验证了理论分析和推导的正确性。  相似文献   
205.
We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13 μm–0.16 μm to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.  相似文献   
206.
Hardware security primitives, also known as physical unclonable functions (PUFs), perform innovative roles to extract the randomness unique to specific hardware. This paper proposes a novel hardware security primitive using a commercial off-the-shelf flash memory chip that is an intrinsic part of most commercial Internet of Things (IoT) devices. First, we define a hardware security source model to describe a hardware-based fixed random bit generator for use in security applications, such as cryptographic key generation. Then, we propose a hardware security primitive with flash memory by exploiting the variability of tunneling electrons in the floating gate. In accordance with the requirements for robustness against the environment, timing variations, and random errors, we developed an adaptive extraction algorithm for the flash PUF. Experimental results show that the proposed flash PUF successfully generates a fixed random response, where the uniqueness is 49.1%, steadiness is 3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach can be applied to security applications with reliability and satisfy high-entropy requirements, such as cryptographic key generation for IoT devices.  相似文献   
207.
208.
Multidimensional Systems and Signal Processing - In this paper, we propose a new amplitude-only method for pattern synthesis of uniform linear array (ULA) based on genetic algorithm (GA) and...  相似文献   
209.
Yao  Lisha  He  Shixiong  Su  Kang  Shao  Qingtong 《Wireless Personal Communications》2022,123(2):1483-1505
Wireless Personal Communications - Microarray-based gene expression profiling is an emerging method to predict, classify, diagnose and to treat cancer efficiently. The characteristics of this...  相似文献   
210.
Structural color (SC) arising from a periodically ordered self-assembled block copolymer (BCP) photonic crystal (PC) is useful for reflective-mode sensing displays owing to its capability of stimuli-responsive structure alteration. However, a set of PC inks, each providing a precisely addressable SC in the full visible range, has rarely been demonstrated. Here, a strategy for developing BCP PC inks with tunable structures is presented. This involves solution-blending of two lamellar-forming BCPs with different molecular weights. By controlling the mixing ratio of the two BCPs, a thin 1D BCP PC film is developed with alternating in-plane lamellae whose periodicity varies linearly from ≈46 to ≈91 nm. Subsequent preferential swelling of one-type lamellae with either solvent or non-volatile ionic liquid causes the photonic band gap of the films to red-shift, giving rise to full-visible-range SC correlated with the pristine nanostructures of the blended films in both liquid and solid states. The BCP PC palette of solution-blended binary solutions is conveniently employed in various coating processes, allowing facile development of BCP SC on the targeted surface. Furthermore, full-color SC paintings are realized with their transparent PC inks, facilitating low-power pattern encryption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号