首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10333篇
  免费   1149篇
  国内免费   675篇
化学   5550篇
晶体学   97篇
力学   407篇
综合类   47篇
数学   696篇
物理学   2394篇
无线电   2966篇
  2024年   19篇
  2023年   216篇
  2022年   230篇
  2021年   426篇
  2020年   368篇
  2019年   358篇
  2018年   284篇
  2017年   294篇
  2016年   408篇
  2015年   387篇
  2014年   469篇
  2013年   678篇
  2012年   832篇
  2011年   834篇
  2010年   608篇
  2009年   583篇
  2008年   708篇
  2007年   594篇
  2006年   557篇
  2005年   510篇
  2004年   428篇
  2003年   371篇
  2002年   352篇
  2001年   242篇
  2000年   198篇
  1999年   168篇
  1998年   154篇
  1997年   133篇
  1996年   126篇
  1995年   114篇
  1994年   81篇
  1993年   73篇
  1992年   67篇
  1991年   64篇
  1990年   35篇
  1989年   26篇
  1988年   31篇
  1987年   20篇
  1986年   17篇
  1985年   19篇
  1984年   14篇
  1983年   10篇
  1982年   11篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1973年   4篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 796 毫秒
191.
针对电力线通信(PLC)和射频(RF)无线通信混合传输的室内通信场景,提出了一种基于角度信息的信道状态信息(AI-CSI)的能效优先传输方案。首先,Wi-Fi无线网络和PLC网络分别作为主网络和次级网络,并且采用认知无线电技术来提高频谱效率的情况下,建立次级网络总能效最大化为目标函数的优化问题。其次,为了求解该问题,通过基于AI-CSI的迫零波束成形方法,获得波束成形权矢量,并进一步提出Dinkelbach与拉格朗日乘子法相结合的优化方法,进行最优的功率分配。最后,计算机仿真结果不仅验证了所提方案的有效性和优越性,而且分析了中继天线数和用户个数等典型参数对系统能效带来的影响,从而为实际系统设计提供了参考和依据。  相似文献   
192.
点云配准是基于机器视觉进行复杂机械零件三维非接触精密测量的关键环节。针对传统迭代最近点(iterative closest point, ICP)算法对初始位置依赖性强,迭代收敛速度慢,错误对应点对多,难以满足大批量复杂机械零件测量点云配准效率和精度要求的问题,提出了一种基于ISS-FPFH(intrinsic shape signature-fast point feature histogram)特征结合改进ICP的复杂机械零件测量点云配准方法。为了减少点云配准数量,并保留点云表面原来的细微特征,提出了基于重心邻近点的体素滤波器对点云进行下采样预处理。为解决传统ICP算法因合适初始位置难以确定而导致多视角测量点云配准失败的问题,采用了基于ISS-FPFH特征的采样一致性初始配准(sample consensus intial alignment, SAC-IA)算法进行粗配准。为解决传统ICP算法迭代收敛速度慢、错误对应点对多的问题,提出结合法向量夹角约束的点到平面ICP算法进行精配准。以斯坦福大学的bunny点云模型为对象,验证了本文提出方法对噪声点云的鲁棒性。以常见的复杂机械零...  相似文献   
193.
Aiming at the problem of poor accuracy consistency of large sections’ docking assembly, an automatic docking method using multiple laser trackers to measure the position and posture of the docking sections in real time was proposed. In the solution of the pose of the docking section, real-time pose measurement of the docking section was realized by establishing a global coordinate system and a coordinate fusion method of three or more laser trackers. In the automatic control of the docking process, the real-time communication protocol and the circular negative feedback control strategy of measurement-adjustment-re-measurement are adopted, and the fully-automated docking of large sections is realized. Finally, an experimental verification system was set up, and the docking of the large-scale section reduction models was realized under the requirements of docking accuracy, and the effectiveness of the automatic docking scheme was successfully verified.  相似文献   
194.
Dissolving microneedle (DMN) is an attractive alternative to parenteral and enteral drug administration owing to its painless self-administration and safety due to non-generation of medical waste. For reproducible and efficient DMN administration, various DMN application methods, such as weights, springs, and electromagnetic devices, have been studied. However, these applicators have complex structures that are complicated to use and high production costs. In this study, a latch applicator that consists of only simple plastic parts and operates via thumb force without any external complex device is developed. Protrusion-shaped latches and impact distances are designed to accumulate thumb force energy through elastic deformation and to control impact velocity. The optimized latch applicator with a pressing force of 25 N and an impact velocity of 5.9 m s−1 fully inserts the drug-loaded tip of the two-layered DMN into the skin. In an ovalbumin immunization test, DMN with the latch applicator shows a significantly higher IgG antibody production rate than that of intramuscular injection. The latch applicator, which provides effective DMN insertion and a competitive price compared with conventional syringes, has great potential to improve delivery of drugs, including vaccines.  相似文献   
195.
Considered the promising anode material for next-generation high-energy lithium-ion batteries, SiOx has been slow to commercialize due to its low initial Coulombic efficiency (ICE) and unstable solid electrolyte interface (SEI) layer, which leads to reduced full-cell energy density, short cycling lives, and poor rate performance. Herein, a novel strategy is proposed to in situ construct an artificial hybrid SEI layer consisting of LiF and Li3Sb on a prelithiated SiOx anode via spontaneous chemical reaction with SbF3. In addition to the increasing ICE (94.5%), the preformed artificial SEI layer with long-term cycle stability and enhanced Li+ transport capability enables a remarkable improvement in capacity retention and rate capability for modified SiOx. Furthermore, the full cell using Li(Ni0.8Co0.1Mn0.1)O2 and a pre-treated anode exhibits high ICE (86.0%) and capacity retention (86.6%) after 100 cycles at 0.5 C. This study provides a fresh insight into how to obtain stable interface on a prelithiated SiOx anode for high energy and long lifespan lithium-ion batteries.  相似文献   
196.
Potassium ion batteries using graphite anode and high-voltage cathodes are considered to be optimizing candidates for large-scale energy storage. However, the lack of suitable electrolytes significantly hinders the development of high-voltage potassium ion batteries. Herein, a dilute (0.8 m ) fluorinated phosphate electrolyte is proposed, which exhibits extraordinary compatibility with both graphite anode and high-voltage cathodes. The phosphate solvent, tris(2,2,2-trifluoroethyl) phosphate (TFP), has weak solvating ability, which not only allows the formation of robust anion-derived solid electrolyte interphase on graphite anode but also effectively suppresses the corrosion of Al current collector at high voltage. Meanwhile, the high oxidative stability of fluorinated TFP solvent enables stable ultrahigh-voltage (4.95 V) cycling of a potassium vanadium fluorophosphate (KVPO4F) cathode. Using TFP-based electrolyte, the 4.9 V-class potassium ion full cell based on graphite anode and KVPO4F cathode shows rather remarkable cycling performance with a high capacity retention of 87.2% after 200 cycles. This study provides a route to develop dilute electrolytes for high-voltage potassium ion batteries, by utilizing solvents with both weak solvating ability and high oxidative stability.  相似文献   
197.
AlGaN-based ultraviolet-B light-emitting diodes (UVB-LEDs) exhibit great potential in phototherapy, vitamin D3 synthesis promotion, plant growth regulation, and so on. However, subjected to the excess compressive strain induced by the large lattice mismatch between multiple quantum wells (MQWs) and AlN, UVB-LEDs that simultaneously satisfy the requirements of high light output power (LOP), low working voltage, and excellent stability are rarely reported. Here, a substrate-dominated strain-modulation strategy is proposed. By precisely manipulating the strain in AlN grown on nano-patterned sapphire substrate (NPSS) to a slightly tensile one, the compressive strain in the following Al0.55Ga0.45N underlayer and Al0.28Ga0.72N/Al0.45Ga0.55N MQWs is successfully suppressed. As a result, an outstanding UVB-LED with a peak wavelength at 303.6 nm is achieved. The 20 × 20 mil2 UVB-LED chip shows a wall-plug efficiency (WPE) of 3.27% under a forward current of 20 mA and a high LOP of 57.2 mW with an extremely low voltage of 5.87 V under a forward current of 800 mA. It is more exciting that the LOP degradation is as low as 17% after 1000 h operation under a forward current density of 75 A cm−2, showing excellent stability. The here-developed UVB-LED, with a high LOP and excellent reliability, will definitely promote the applications of AlGaN-based UVB-LEDs.  相似文献   
198.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   
199.
Underwater optical communication (UOC) has attracted considerable interest in the continuous expansion of human activities in marine/ocean environments. The water-durable and self-powered photoelectrodes that act as a battery-free light receiver in UOC are particularly crucial, as they may directly face complex underwater conditions. Emerging photoelectrochemical (PEC)-type photodetectors are appealing owing to their intrinsic aqueous operation characteristics with versatile tunability of photoresponses. Herein, a self-powered PEC photodetector employing n-type gallium nitride (GaN) nanowires as a photoelectrode, which is decorated with an iridium oxide (IrOx) layer to optimize charge transfer dynamics at the GaN/electrolyte interface, is reported. Strikingly, the constructed n-GaN/IrOx photoelectrode breaks the responsivity-bandwidth trade-off limit by simultaneously improving the response speed and responsivity, delivering an ultrafast response speed with response/recovery times of only 2 µs/4 µs while achieving a high responsivity of 110.1 mA W−1. Importantly, the device exhibits a large bandwidth with 3 dB cutoff frequency exceeding 100 kHz in UOC tests, which is one of the highest values among self-powered photodetectors employed in optical communication system.  相似文献   
200.
Lithium metal (LM) is a promising anode material for next generation lithium ion based electrochemical energy storage devices. Critical issues of unstable solid electrolyte interphases (SEIs) and dendrite growth however still impede its practical applications. Herein, a composite gel polymer electrolyte (GPE), formed through in situ polymerization of pentaerythritol tetraacrylate with fumed silica fillers, is developed to achieve high performance lithium metal batteries (LMBs). As evidenced theoretically and experimentally, the presence of SiO2 not only accelerates Li+ transport but also regulates Li+ solvation sheath structures, thus facilitating fast kinetics and formation of stable LiF-rich interphase and achieving uniform Li depositions to suppress Li dendrite growth. The composite GPE-based Li||Cu half-cells and Li||Li symmetrical cells display high Coulombic efficiency (CE) of 90.3% after 450 cycles and maintain stability over 960 h at 3 mA cm−2 and 3 mAh cm−2, respectively. In addition, Li||LiFePO4 full-cells with a LM anode of limited Li supply of 4 mAh cm−2 achieve capacity retention of 68.5% after 700 cycles at 0.5 C (1 C = 170 mA g−1). Especially, when further applied in anode-free LMBs, the carbon cloth||LiFePO4 full-cell exhibits excellent cycling stability with an average CE of 99.94% and capacity retention of 90.3% at the 160th cycle at 0.5 C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号