首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  国内免费   1篇
化学   49篇
晶体学   1篇
数学   2篇
物理学   20篇
无线电   12篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   11篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  1999年   1篇
  1991年   1篇
  1986年   1篇
  1974年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
21.
Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators – crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) – were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young''s modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.

Orthogonal modes of activation in thermoresponsive hydrogel actuators using porphyrin-based visible light photoredox catalysis, viologen-based crosslinkers, and poly(N-isopropylacrylamide).  相似文献   
22.
Information fusion is one of the essential part of distributed wireless sensor networks as well as perceptual user interfaces. Irrelevant and redundant data severely affect the performance of the information fusion process. In this paper, a method based on multivariate mutual information is presented to validate the acceptability of data from two sources (visual and auditory). The audiovisual information is fused to observe the ventriloquism effect to validate the algorithm. Unlike the preceding algorithms, this framework does not require any preprocessing such as automatic face recognition. Moreover, statistical modeling or feature extraction and learning algorithms are not required to extract the maximum information regions. The results for various cases, containing a single speaker as well as a group of speakers, are also presented.  相似文献   
23.

Wound healing is a complex process which requires an appropriate environment for quick healing. Recently, biodegradable hydrogel-based wound dressings have been seen to have high potential owing to their biodegradability and hydrated molecular structure. In this work, a novel biodegradable composite of sodium alginate hydrogel with wool needle-punched nonwoven fabric was produced for wound dressing by sol–gel technique. The wool nonwoven was dipped in the sodium alginate-water solution and then soaked in calcium chloride solution which resulted in hydrogel formation. FTIR analysis and SEM images confirm the presence of alginate hydrogel inside the needle-punched wool nonwoven fabric. The wound exudate absorbing capacity of hydrogel based wool nonwoven was increased 30 times as compared to pure wool nonwoven. Moreover, the tensile strength and moisture management properties of hydrogel based nonwoven were also enhanced. The unique combination of alginate hydrogel with biocompatible wool nonwoven fabric provides moist environment and can help in cell proliferation during wound healing process.

  相似文献   
24.
This paper described a new approach for the preconcentration of lead (Pb2+) by temperature controlled ionic liquid-dispersive liquid phase microextraction (TIL-DLME) prior to analyzing by flame atomic absorption spectrometry (FAAS). An ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] was used as an extractant solvent. The Pb2+ was complexed with ammonium pyrrolidinedithiocarbamate (APDC) and then entered into the infinite IL drops at high temperature (> 70 °C). Important variables affecting the microextraction efficiency such as pH, ligand concentration, amount of IL, temperature and incubation time were investigated. The results showed that the coexistent ions had no obvious negative effect on the determination of Pb2+. In the optimum experimental conditions, the limit of detection (LOD) and the enhancement factor (EF) were 0.13 μg L? 1 and 93, respectively. The relative standard deviation (RSD) of 10 μg L? 1 Pb2+ was 4.3%. The developed method was validated by determining Pb2+ in certified reference material (CRM) and the results showed that the determined values of Pb2+ were in good agreement with the certified value. The proposed method was applied satisfactorily for the preconcentration of Pb2+ in acid digested blood samples of children with different respiratory disorders.  相似文献   
25.
Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species, or strain.  相似文献   
26.
This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ε1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.  相似文献   
27.
The current study explored the effects of natural compounds, berbamine, bergapten, and carveol on paclitaxel-associated neuroinflammatory pain. Berbamine, an alkaloid obtained from Berberis amurensisRuprhas been previously researched for anticancer and anti-inflammatory potential. Bergapten is 5-methoxsalenpsoralen previously investigated in cancer, vitiligo, and psoriasis. Carveol obtained from caraway is a component of essential oil. The neuropathic pain model was induced by administering 2 mg/kg of paclitaxel (PTX) every other day for a week. After the final PTX injection, a behavioral analysis was conducted, and subsequently, tissue was collected for molecular analysis. Berbamine, bergapten, and carveol treatment attenuated thermal hypersensitivity, improved latency of falling, normalized the changes in body weight, and increased the threshold for pain sensation. The drugs increased the protective glutathione (GSH) and glutathione S-transferase (GST) levels in the sciatic nerve and spinal cord while lowering inducible nitric oxide synthase (iNOS) and lipid peroxidase (LPO). Hematoxylin and eosin (H and E) and immunohistochemistry (IHC) examinations confirmed that the medication reversed the abnormal alterations. The aforementioned natural substances inhibited cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κb) overexpression, as evidenced by enzyme-linked immunosorbant assay (ELISA) and Western blot and hence provide neuroprotection in chronic constriction damage.  相似文献   
28.
Haq  Abdul  Faheem  Yasir 《Wireless Networks》2020,26(1):583-601
Wireless Networks - In the absence of Internet connectivity, a content-centric opportunistic network can be established by mobile human-held devices. However, to save battery, buffer, and bandwidth...  相似文献   
29.
30.
Isoporous block copolymer (BCP) films have received exponential interest as highly selective membranes, stemming from their unique morphological features, but their applications in functional devices remain to be realized. Now single‐walled carbon nanotubes (CNTs) were efficiently incorporated into isoporous block copolymer films for chemiresistive sensing at room temperature. Leveraging the efficient charge extraction ability of CNTs together with nanochannel arrays aligned perpendicular to the surface of the films, an ultrafast response time of 0.3 s was achieved for humidity detection with a sensor response of about 800 on changing humidity from 10 % to 95 %. Furthermore, the sensor also responds to various organic vapors, underscoring its promising detection capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号