首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   19篇
  国内免费   4篇
化学   229篇
晶体学   2篇
力学   51篇
数学   37篇
物理学   77篇
无线电   65篇
  2024年   1篇
  2023年   3篇
  2022年   21篇
  2021年   25篇
  2020年   27篇
  2019年   32篇
  2018年   32篇
  2017年   27篇
  2016年   21篇
  2015年   16篇
  2014年   36篇
  2013年   39篇
  2012年   49篇
  2011年   41篇
  2010年   21篇
  2009年   13篇
  2008年   13篇
  2007年   16篇
  2006年   5篇
  2005年   2篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
31.
Type 2 diabetes mellitus is the result of resistance to insulin function along with inadequate insulin secretion, leading to a number of dysfunctions characterized by hyperglycemia, and it is associated with microvascular, macrovascular, and neuropathic complications. There is compelling evidence that the decline in both insulin sensitivity and insulin secretion has a genetic component. In addition, increasing evidence suggests that microRNAs (miRNAs) as key regulators of gene expression play significant roles in insulin production, secretion, and function that regulate the function of insulin-target tissues. The current review demonstrates the candidate genes and the related miRNAs involved in molecular pathogenesis of insulin resistance in type 2 diabetes mellitus. In doing so, it provides an opportunity for more focused investigations that may identify the genes and miRNAs with a role in the pathogenesis of type 2 diabetes mellitus and its treatment.  相似文献   
32.

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

  相似文献   
33.
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies.

In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.  相似文献   
34.
An efficient synthesis of aryliminophosphoranes is described. A mixture of an aromatic amine, diethyl azodicarboxylate and triphenylphosphine undergo a Mitsonobu type reaction at ambient temperature in dry dichloromethane to afford aryliminophosphoranes in excellent yields.  相似文献   
35.
A combination of negative refraction and diffraction compensation in a superprism-based photonic crystal structure is used to demonstrate a compact on-chip photonic crystal spectrometer. This structure provides strong dispersion and signal isolation, which are essential for forming an efficient and compact spectrometer. Performance of these spectrometers as spectral pattern detectors is discussed. The experimental results show that a PC structure with 80 μm × 220 μm dimension can locate a single spectral feature with better than 10 pm accuracy over a bandwidth of 50 nm around 1550 nm center wavelength at an output signal-to-noise ratio of 13 dB.  相似文献   
36.
This paper deals with the Finite Difference Time Domain (FDTD) simulation of interaction of an electromagnetic wave with a switched plasma slab. In formulating the simulation the well-known concepts of (a) total-field/scattered-field formulation (b) and PML lattice truncation are adapted to suit the simulation under consideration.FDTD is particularly well suited to handle the switched (time-varying) medium (including sudden switching) since the time varying parameters of the medium can be easily interpreted in the algorithm. The technique is applied to the difficult problem of interaction of an electromagnetic pulse source wave of frequency 0 and a gaussian envelope with a newly created plasma slab of time-varying and space varying electron density profile. The creation of a pulse of Wiggler magnetic field in the slab is illustrated.  相似文献   
37.
The main objective of the current work is to introduce a new conceptual linearization strategy to improve the performance of a primitive shock‐capturing pressure‐based finite‐volume method. To avoid a spurious oscillatory solution in the chosen collocated grids, both the primitive and extended methods utilize two convecting and convected momentum expressions at each cell face. The expressions are obtained via a physical‐based discretization of two inclusive statements, which are constructed via a novel incorporation of the continuity and momentum governing equations. These two expressions in turn provide a strong coupling among the Euler conservative statements. Contrary to the primitive work, the linearization in the current work respects the definitions and essence of physics behind deriving the Euler governing equations. The accuracy and efficiency of the new formulation are then investigated by solving the shock tube as a problem with moving normal and expansion waves and the converging‐diverging nozzle as a problem with strong stationary normal shock. The results show that there is good improvement in performance of the primitive pressure‐based shock‐capturing method while its superior accuracy is not deteriorated at all. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   
38.
Ehsan Zaman  Payman Jalali 《Physica A》2010,389(2):205-214
Hydraulic permeability is studied in porous media consisting of randomly distributed monodisperse spheres by means of computational fluid dynamics (CFD) simulations. The packing of spheres is generated by inserting a certain number of nonoverlapping spherical particles inside a cubic box at both low and high packing fractions using proper algorithms. Fluid flow simulations are performed within the interparticulate porous space by solving Navier-Stokes equations in a low-Reynolds laminar flow regime. The hydraulic permeability is calculated from the Darcy equation once the mean values of velocity and pressure gradient are calculated across the particle packing. The simulation results for the pressure drop across the packing are verified by the Ergun equation for the lower range of porosities (<0.75), and the Stokes equation for higher porosities (∼1). Using the results of simulations, the effects of porosity and particle diameters on the hydraulic permeability are investigated. Simulations precisely specified the range of applicability of empirical or semi-empirical correlations for hydraulic permeability, namely the Carman-Kozeny, Rumpf-Gupte, and Howells-Hinch formulas. The number of spheres in the model is gradually decreased from 2000 to 20 to discover the finite-size effect of pores on the hydraulic permeability of spherical packing, which has not been clearly addressed in the literature. In addition, the scale dependence of hydraulic permeability is studied via simulations of the packing of spheres shrunk to lower scales. The results of this work not only reveal the validity range of the aforementioned correlations, but also show the finite-size effect of pores and the scale-independence of direct CFD simulations for hydraulic permeability.  相似文献   
39.
The title compound, {(C14H16P)[Cu5I6]}n, prepared from the reaction between copper powder, iodine and dimethyldiphenylphosphonium iodide in hydroxyacetone, features an anion that consists of a continuous two‐dimensional Cu–I sheet [Cu—I = 2.5960 (14)–2.6994 (13) Å and Cu—I—Cu = 63.28 (5)–114.25 (5)°]. The cation, which lies on a mirror plane, is a typical dimethyldiphenylphosphonium ion. The structure shows a strong tendency towards segregation of the inorganic and organic parts of the structure into separate subspaces. The two‐dimensional Cu–I sheet displays a pronounced subcell with pseudo‐tetragonal symmetry that is broken by ordered vacancies on the Cu position. The symmetry is further reduced by the orientation of the interleaved organic counter‐ion that is inclined with respect to the pseudo‐mirror planes defined by the Cu–I sheet normal, perpendicular to the b axis.  相似文献   
40.
The primary purpose of this contribution is to develop a novel framework for generalized robust design of tuned mass damper (TMD) systems as passive vibration controllers for uncertain structures. This versatile strategy is intended to be free of any restriction on the structure-TMD system configuration, the performance criterion, and the number of uncertain parameters. The main idea pursued is to adopt methods and concepts from the robust control literature, including: (1) the linear fractional transformation (LFT) formulation pertaining to the structured singular value (μ) framework; (2) the concept of weighted multi-input multi-output (MIMO) norms for characterizing performance; and (3) a worst-case performance assessment method to avoid the unacceptable computation burden involved with exhaustive search or Monte Carlo methods in the presence of multiple uncertainties. Based on these, the robust design framework is organized into four steps: (1) modeling and casting the overall dynamics into the proposed LFT framework that isolates the TMD system as the controller, and the uncertainties as a structured perturbation to the nominal dynamics; (2) setting up the optimization problem based on generalized indices of nominal performance, robustness, and worst-case performance; (3) implementing a genetic algorithm (GA) for solution of the optimization problem; and (4) post-processing the results for systematic visualization, validation, and selection of preferred designs. This strategy has been implemented on several illustrative design examples involving a seismically excited multi-story building with different combinations of assumptions on the uncertainty, TMD configuration, excitation scenarios, and performance criteria. The resulting solution sets have been studied through various post-processing methods, including visualization of Pareto fronts, uncertain frequency response plots, time-domain simulations, and random vibration analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号