首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4913篇
  免费   788篇
  国内免费   528篇
化学   2607篇
晶体学   54篇
力学   288篇
综合类   17篇
数学   403篇
物理学   1595篇
无线电   1265篇
  2024年   13篇
  2023年   158篇
  2022年   139篇
  2021年   217篇
  2020年   203篇
  2019年   191篇
  2018年   169篇
  2017年   151篇
  2016年   239篇
  2015年   224篇
  2014年   287篇
  2013年   354篇
  2012年   445篇
  2011年   442篇
  2010年   306篇
  2009年   311篇
  2008年   322篇
  2007年   297篇
  2006年   287篇
  2005年   231篇
  2004年   160篇
  2003年   137篇
  2002年   114篇
  2001年   100篇
  2000年   107篇
  1999年   76篇
  1998年   82篇
  1997年   70篇
  1996年   67篇
  1995年   75篇
  1994年   38篇
  1993年   47篇
  1992年   47篇
  1991年   30篇
  1990年   27篇
  1989年   17篇
  1988年   11篇
  1987年   8篇
  1986年   6篇
  1985年   10篇
  1984年   1篇
  1983年   6篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有6229条查询结果,搜索用时 406 毫秒
81.
Although the piezo-catalysis is promising for the environmental remediation and biomedicine, the piezo-catalytic properties of various piezoelectric materials are limited by low carrier concentrations and mobility, and rapid electron-hole pair recombination, and reported regulating strategies are quite complex and difficult. Herein, a new and simple strategy, integrating phase boundary engineering and defect engineering, to boost the piezo-catalytic activity of potassium sodium niobate ((K, Na)NbO3, KNN) based materials is innovatively proposed. Tur strategy is validated by exampling 0.96(K0.48Na0.52)Nb0.955Sb0.045O3-0.04(BixNa4-3x)0.5ZrO3-0.3%Fe2O3 material having phase boundary engineering and conducted the defect engineering via the high-energy sand-grinding. A high reaction rate constant k of 92.49 × 10−3 min−1 in the sand-grinding sample is obtained, which is 2.40 times than that of non-sand-grinding one and superior to those of other representative lead-free perovskite piezoelectric materials. Meanwhile, the sand-grinding sample has remarkable bactericidal properties against Escherichia coli and Staphylococcus aureus. Superior piezo-catalytic activities originate from the enhanced electron-hole pair separation and the increased carrier concentration. This study provides a novel method for improving the piezo-catalytic activities of lead-free piezoelectric materials and holds great promise for harnessing natural energy and disease treatment.  相似文献   
82.
Metamaterial absorbers have been widely studied and continuously concerned owing to their excellent resonance features of ultra-thin thickness, light-weight, and high absorbance. Their applications, however, are typically restricted by the intrinsic dispersion of materials and strong resonant features of patterned arrays (mainly referring to narrow absorption bandwidth). It is, therefore essential to reassert the principles of building broadband metamaterial absorbers (BMAs). Herein, the research progress of BMAs from principles, design strategies, tunable properties to functional applications are comprehensively and deeply summarized. Physical principles behind broadband absorption are briefly discussed, typical design strategies in realizing broadband absorption are further emphasized, such as top-down lithography, bottom-up self-assembly, and emerging 3D printing technology. Diversified active components choices, including optical response, temperature response, electrical response, magnetic response, mechanical response, and multi-parameter responses, are reviewed in achieving dynamically tuned broadband absorption. Following this, the achievements of various interdisciplinary applications for BMAs in energy-harvesting, photodetectors, radar-IR dual stealth, bolometers, noise absorbing, imaging, and fabric wearable are summarized. Finally, the challenges and perspectives for future development of BMAs are discussed.  相似文献   
83.
Developing new polymerized small molecular acceptor (PSMA) is pivotal for improving the performance of all-polymer solar cells. On the basis of this newly developed CH-series small molecule acceptors, two PSMAs are reported herein (namely PZC16 and PZC17, respectively). To reduce the molecular torsion caused by the traditional aromatic π-bridges, non-aromatic conjugated units (ethynyl for PZC16 and vinylene for PZC17) are adopted as the linkers and their effect on the photo-physical properties as well as the device performance are systematically investigated. Both polymer acceptors exhibit co-planar molecular conformation, along with broad absorption ranges and suitable energy levels. In comparison with the PM6:PZC16 film, the PM6:PZC17 film exhibits more uniform phase separation in morphology with a distinct bi-continuous network and better crystallinity. The PM6:PZC17-binary-based devices exhibit a satisfactory PCE of 16.33%, significantly higher than 9.22% of the PZC16-based devices. Impressively, PM6:PZC17-based large area device (ca. 1 cm2) achieves an excellent PCE of 15.14%, which is among the top performance for reported all-polymer solar cells (all-PSCs).  相似文献   
84.
Semitransparent organic solar cells (ST-OSCs) have attracted increasing attention due to their promising prospect in building-integrated photovoltaics. Generally, efficient ST-OSCs with good average visible transmittance (AVT) can be realized by developing active layer materials with light absorption far from the visible light range. Herein, the development of ultrawide bandgap polymer donors with near-ultraviolet absorption, paired with near-infrared acceptors, is proposed to achieve high-performance ST-OSCs. The key points for the design of ultrawide bandgap polymers include constructing donor–donor type conjugated skeleton, suppressing the quinoidal resonance effect, and minimizing the twist of conjugated skeleton via noncovalent conformational locks. As a proof of concept, a polymer named PBOF with an optical bandgap of 2.20 eV is synthesized, which exhibited largely reduced overlap with the human eye photopic response spectrum and afforded a power conversion efficiency (PCE) of 16.40% in opaque device. As a result, ST-OSCs with a PCE over 10% and an AVT over 30% are achieved without optical modulation. Moreover, colorful ST-OSCs with visual aesthetics can be achieved by tuning the donor/acceptor weight ratio in active layer benefiting from the ultrawide bandgap nature of PBOF. This study demonstrates the great potential of ultrawide bandgap polymers for efficient colorful ST-OSCs.  相似文献   
85.
Radiotherapy is identified as a crucial treatment for patients with glioblastoma, but recurrence is inevitable. The efficacy of radiotherapy is severely hampered partially due to the tumor evolution. Growing evidence suggests that proneural glioma stem cells can acquire mesenchymal features coupled with increased radioresistance. Thus, a better understanding of mechanisms underlying tumor subclonal evolution may develop new strategies. Herein, data highlighting a positive correlation between the accumulation of macrophage in the glioblastoma microenvironment after irradiation and mesenchymal transdifferentiation in glioblastoma are presented. Mechanistically, elevated production of inflammatory cytokines released by macrophages promotes mesenchymal transition in an NF-κB-dependent manner. Hence, rationally designed macrophage membrane-coated porous mesoporous silica nanoparticles (MMNs) in which therapeutic anti-NF-κB peptides are loaded for enhancing radiotherapy of glioblastoma are constructed. The combination of MMNs and fractionated irradiation results in the blockage of tumor evolution and therapy resistance in glioblastoma-bearing mice. Intriguingly, the macrophage invasion across the blood-brain barrier is inhibited competitively by MMNs, suggesting that these nanoparticles can fundamentally halt the evolution of radioresistant clones. Taken together, the biomimetic MMNs represent a promising strategy that prevents mesenchymal transition and improves therapeutic response to irradiation as well as overall survival in patients with glioblastoma.  相似文献   
86.
The detection of ultraviolet (UV) radiation with effective performance and robust stability is essential to practical applications. Metal halide single-crystal perovskites (ABX3) are promising next-generation materials for UV detection. The device performance of all-inorganic CsPbCl3 photodetectors (PDs) is still limited by inner imperfection of crystals grown in solution. Here wafer-scale single-crystal CsPbCl3 thin films are successfully grown by vapor-phase epitaxy method, and the as-constructed PDs under UV light illumination exhibit an ultralow dark current of 7.18 pA, ultrahigh ON/OFF ratio of ≈5.22 × 105, competitive responsivity of 32.8 A W−1, external quantum efficiency of 10867% and specific detectivity of 4.22 × 1012 Jones. More importantly, they feature superb long-term stability toward moisture and oxygen within twenty-one months, good temperature tolerances at low and high temperatures. The ability of the photodetector arrays for excellent UV light imaging is further demonstrated.  相似文献   
87.
A highly biomimetic neotrachea with C-shaped cartilage rings has promising clinical applications in the treatment of circumferential tracheal defects (CTDs) owing to its structure and physiological function. However, to date, most fabricated tracheal cartilages are O-shaped. In this study, finite element analysis demonstrates C-shaped cartilage rings that exhibit better compliance than O-shaped. Hydrogel is developed using methacryloyl-modified decellularized Wharton's jelly matrix (DWJMA) for the regeneration of C-shaped cartilage rings. This novel hydrogel possesses adjustable physicochemical properties and favorable cytocompatibility. When loaded with chondrocytes, DWJMA hydrogels support the optimal cartilage regeneration both in vitro and in vivo. More importantly, a highly biomimetic neotrachea simultaneously simulating the structural and physiological properties of the normal trachea is regenerated via modular assembly of several individual C-shaped cartilage rings. The results demonstrate the highly biomimetic neotrachea have better patency (88.6 ± 6.1% vs 74.4 ± 9.4%, p < 0.05), improve the survival rate, alleviate weight loss and mucoid impaction, than its O-shaped counterpart when used for the treatment of CTDs in a rabbit model. Therefore, this study proposes a novel hydrogel for the regeneration of C-shaped cartilage and provides new insights into the treatment of CTDs using a highly biomimetic neotrachea with C-shaped cartilage rings.  相似文献   
88.
Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate-change crisis and realizing a carbon-neutral economy. Single-atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single-site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single-atom centers and two-coordinated N vacancies as dual active sites on CN (Cu1/N2CV-CN). Experimental and theoretical results show that Cu single-atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual-functional sites, the Cu1/N2CV-CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic-level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.  相似文献   
89.
Single crystal metal halide perovskites thin films are considered to be a promising optical, optoelectronic materials with extraordinary performance due to their low defect densities. However, it is still difficult to achieve large-scale perovskite single-crystal thin films (SCTFs) with tunable bandgap by vapor-phase deposition method. Herein, the synthesis of CsPbCl3(1–x)Br3x SCTFs with centimeter size (1 cm × 1 cm) via vapor-phase deposition is reported. The Br composition of CsPbCl3(1–x)Br3x SCTFs can be gradually tuned from x = 0 to x = 1, leading the corresponding bandgap to change from 2.29 to 2.91 eV. Additionally, an low-threshold (≈23.9 µJ cm−2) amplified spontaneous emission is achieved based on CsPbCl3(1–x)Br3x SCTFs at room temperature, and the wavelength is tuned from 432 to 547 nm by varying the Cl/Br ratio. Importantly, the high-quality CsPbCl3(1–x)Br3x SCTFs are ideal optical gain medium with high gain up to 1369.8 ± 101.2 cm−1. This study not only provides a versatile method to fabricate high quality CsPbCl3(1–x)Br3x SCTFs with different Cl/Br ratio, but also paves the way for further research of color-tunable perovskite lasing.  相似文献   
90.
随着交流电机在现代社会生产中的广泛应用,三相交流异步交流调速控制系统成为研究的热点,各种各样的变频调速方案相继出现,作为当前两种主要的交流电机变频控制方法,矢量控制和直接转机控制在实际中得到广泛的应用。本文以矢量控制与直接转矩控制比较为核心,对二者的控制原理、特性以及应用进行了分析与比较。同时,在分析的直接转矩控制原理的基础上,基于Simulink环境下对直接转矩控制系统进行仿真模型的搭建,并得到相应的仿真图象。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号