首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3623篇
  免费   216篇
  国内免费   11篇
化学   2150篇
晶体学   33篇
力学   75篇
数学   134篇
物理学   515篇
无线电   943篇
  2024年   6篇
  2023年   44篇
  2022年   52篇
  2021年   81篇
  2020年   94篇
  2019年   86篇
  2018年   61篇
  2017年   65篇
  2016年   132篇
  2015年   106篇
  2014年   123篇
  2013年   203篇
  2012年   253篇
  2011年   285篇
  2010年   187篇
  2009年   189篇
  2008年   268篇
  2007年   249篇
  2006年   205篇
  2005年   205篇
  2004年   146篇
  2003年   126篇
  2002年   128篇
  2001年   86篇
  2000年   68篇
  1999年   78篇
  1998年   42篇
  1997年   32篇
  1996年   40篇
  1995年   36篇
  1994年   32篇
  1993年   30篇
  1992年   15篇
  1991年   12篇
  1990年   16篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1979年   2篇
  1978年   5篇
  1976年   4篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3850条查询结果,搜索用时 0 毫秒
121.
122.
123.
Polypyrrole (PPy) nanotubes were readily fabricated through chemical oxidation polymerization in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse (water-in-oil) emulsions. The reverse cylindrical micelle phase was characterized, and the key factors affecting the formation of PPy nanotubes were systematically inspected. AOT reverse cylindrical micelles were prepared via a cooperative interaction between an aqueous FeCl3 solution and AOT in an apolar solvent. In the H2O/FeCl3/AOT/apolar solvent system, the aqueous FeCl3 solution played a role in increasing the ionic strength and decreasing the second critical micelle concentration of AOT. As a result, AOT reverse cylindrical micelles could be spontaneously formed in an apolar solvent. In addition, iron cations were adsorbed to the anionic AOT headgroups that were capable of extracting metal cations from the aqueous core. Under these conditions, the addition of pyrrole monomer resulted in the chemical oxidation polymerization of the corresponding monomer at the surface of AOT reverse cylindrical micelles, followed by the formation of tubular PPy nanostructures. In a typical composition (74.0 wt % hexane, 22.4 wt % AOT, and 3.6 wt % aqueous FeCl3 solution at 15 degrees C), the average diameter of PPy nanotubes was approximately 94 nm and their length was more than 2 mum. The PPy nanotube dimensions were affected by synthetic variables such as the weight ratio of aqueous FeCl3 solution/AOT, type of apolar solvent, and reaction temperature. Moreover, the relationship between the diameter and the conductivity of the nanotubes was investigated.  相似文献   
124.
A novel pressure-driven sample injection method was developed as an alternative to electrokinetic injection, and electrophoretic separation was carried out on a microfabricated device employing this method. This method enables a defined volume of liquid dispensing, followed by instantaneous injection driven by pneumatic pressure, greatly simplifying the injection procedure. A particular microstructure, called a "metering chamber", has been designed for the quantitative dispensing of an ultra-low volume of sample liquid; a "hydrophobic passive valve" equipped with an air vent channel is employed for injecting a dispensed sample into the separation channel. The reproducibility of dispensing was 3.3% (n = 15), expressed by the variation of dispensed volumes. The electrophoretic separation of DNA fragments was performed using this injection method, varying the injection volumes from 0.45 to 4.0 nL, and the separation efficiencies were compared. This precise injection method, easily variable in injection volumes, is highly suitable for quantitative as well as qualitative electrophoretic analyses.  相似文献   
125.
Summary: Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two‐site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed.

Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations.  相似文献   

126.
The use of titanium‐based alloys as biomaterials is becoming more common because they have a reduced elastic modulus, superior biocompatibility, specific strength, good corrosion resistance, superior strain control, and fatigue resistance compared to conventional stainless steel and Co? Cr alloys. However, when implanted into the human body these metals are problematic because they do not directly bond with living bone. Surface treatments play an important role in nucleating calcium phosphate deposition on a surgical titanium alloy implant. The purpose of this study is to examine whether the precipitation of apatite on Ti? 10Ta? 10Nb alloy is affected by surface modification in H2O2 solution. Specimens were chemically treated with a solution containing 30 wt% H2O2 at 80 °C for 1 h, and subsequently heat treated at 400 °C for 1 h. All specimens were immersed in SBF (Simulated Body Fluid) with a pH of 7.4 at 36.5 °C for seven days, and the surfaces were examined with XRD, SEM, EDX and in vitro testing. The microstructure analysis of the Ti? 10Ta? 10Nb alloy after etching with Keller's etchant showed a Widmanstatten pattern. The micro‐Vickers hardness number was 236.44 ± 4.99, and surface roughness was increased by the surface treatment. The wettability after surface treatment was better than on the nontreated surface. Resistance to cytotoxicity was decreased by the chemical surface treatment (P < 0.05). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
127.
[reaction: see text] A simple, efficient, and high-yielding synthesis of quinazolin-4-ylamine and thieno[3,2-d]pyrimidin-4-ylamine derivatives is reported under microwave irradiation conditions. Reaction conditions including temperature, solvent, and reaction time have been studied. An efficient parallel workup procedure was developed to generate a small library (23 compounds) in a short time period.  相似文献   
128.
Some photosensitive molecules, such as p-N,N′-dimethylaminobenzoic acid (DMABA), Nile Red, heteropolytungstic acid (H3PW12O40, HPA) and metalloporphyrins, have been entrapped onto nano-scale pores or channels of TiO2-modified Y-Zeolite (TiO2-Y-Zeolite) and MCM41 (TiO2-MCM41) and their excited-state intermediates have been characterized in terms of the excited-state dynamics by using laser spectroscopic techniques. Through these studies, it has been found that the photo-induced electrons are generated from the intramolecular charge transfer (ICT) state of DMABA, Nile Red or metalloporphyrin (MnTPP(Cl)), followed by transferring to the TiO2-Y-Zeolite or TiO2-MCM41 more efficiently as compared to the bulk TiO2, NaY-Zeolite or MCM41. The efficient photoinduced interfacial electron transfer causes the rapid formation of radicals of those photosensitive molecules (a few tens ps). It has been also found that these photophysical properties can be applied to develop the new photocatalyst as observed by the efficient photocatalytic activities of the DMABA or Nile Red-entrapped TiO2-Y-Zeolites for the photoreduction of an azo-dye such as Methyl Orange in water. On the other hand, in case of HPA-entrapped TiO2-Y-zeolite, the electron generated from the excited-state TiO2 is transferred to HPA, followed by formation of the reduction product, heteropoly blue (HPB) which is also generated by UV irradiation of HPA. This electron transfer is analogous to the Z-scheme mechanism of plant photosynthetic systems showing two photon reactions. Because of this photoelectron transfer mechanism, the HPA-entrapped TiO2-Y-zeolite has demonstrated the synergistic enhancement of the photocatalytic decomposition of Methyl Orange and hydrogen generation from photolysis of water.  相似文献   
129.
The NO2S2-donor macrocycle (L1) was synthesised from the ring closure reaction between Boc-N-protected 2,2'-iminobis(ethanethiol) (3) and 2,2'-(ethylenedioxy)bis(benzyl chloride) (4) followed by deprotection of the Boc-group. alpha,alpha'-Dibromo-p-xylene was employed as a dialkylating agent to bridge two L1 to yield the corresponding N-linked product (L2). The X-ray structure of L2 (as its HBr salt) is described. A range of Cd(II) and Hg(II) complexes of L1 (6-9) and L2 (10-12) were prepared and characterised. Reaction of HgX2 (X = Br or I) with L1 afforded [Hg(L1)Br]2[Hg2Br6].2CH2Cl2 6 and [Hg(L1)I(2)] 7, respectively. For 6, the Hg(II) ion in the complex cation has a distorted tetrahedral coordination environment composed of S2N donor atoms from L1 and a bromo ligand. In 7 the coordination geometry is highly distorted tetrahedral, with the macrocycle coordinating in an exodentate manner via one S and one N atom. The remaining two coordination sites are occupied by iodide ions. [Hg(L1)(ClO4)]ClO4 8 was isolated from the reaction of Hg(ClO4)2 and L1. The X-ray structure reveals that all macrocyclic ring donors bind to the central mercury ion in this case, with the latter exhibiting a highly distorted octahedral coordination geometry. The O2S2-donors from the macrocyclic ring define the equatorial plane while the axial positions are occupied by the ring nitrogen as well as by an oxygen from a monodentate perchlorato ion. Reaction of Cd(NO3)(2).4H2O with L1 afforded [Cd(L1)(NO3)2](.)0.5CH2Cl2 9 in which L1 acts as a tridentate ligand, binding exo-fashion via its S2N donors. The remaining coordination positions are filled by two bidentate nitrate ions such that, overall, the cadmium is seven-coordinate. Reactions of HgX2(X = Br or I) with L2 yielded the isostructural 2 : 1 (metal : ligand) complexes, [Hg2(L2)Br4] 10 and [Hg2(L2)I(4)] 11. Each mercury ion has a distorted tetrahedral environment made up of S and N donors from an exodentate L2 and two coordinated halides. Contrasting with this, the reaction of L2 with Cd(NO3)(2).4H2O yielded a 1-D coordination network, {[Cd2(L2)(NO3)4].2CH2Cl2}n 12 in which each ring of L2 is exo-coordinated via two S atoms and one N atom to a cadmium ion which is also bound to one monodentate and one bidentate nitrate anion. The latter also has one of its oxygen atom attached to a neighboring cadmium via a nitroso (mu2-O) bridge such that the overall coordination geometry about each cadmium is seven-coordinate. The [Cd(L2)0.5(NO3)2] units are linked by an inversion to yield the polymeric arrangement.  相似文献   
130.
A simple and efficient approach of controlling the side-chain density in the electron donating polymers has been demonstrated to tune their 3-D packing structure and HOMO level, which increases the hole mobility and V(oc) values, thus improving the solar cell performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号