首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20283篇
  免费   3290篇
  国内免费   2230篇
化学   11541篇
晶体学   186篇
力学   772篇
综合类   98篇
数学   1402篇
物理学   5639篇
无线电   6165篇
  2024年   49篇
  2023年   465篇
  2022年   537篇
  2021年   785篇
  2020年   801篇
  2019年   802篇
  2018年   699篇
  2017年   630篇
  2016年   908篇
  2015年   958篇
  2014年   1131篇
  2013年   1492篇
  2012年   1720篇
  2011年   1730篇
  2010年   1259篇
  2009年   1295篇
  2008年   1394篇
  2007年   1245篇
  2006年   1120篇
  2005年   991篇
  2004年   780篇
  2003年   733篇
  2002年   778篇
  2001年   550篇
  2000年   442篇
  1999年   416篇
  1998年   314篇
  1997年   281篇
  1996年   252篇
  1995年   234篇
  1994年   172篇
  1993年   150篇
  1992年   140篇
  1991年   127篇
  1990年   80篇
  1989年   60篇
  1988年   49篇
  1987年   35篇
  1986年   37篇
  1985年   35篇
  1984年   21篇
  1983年   16篇
  1982年   16篇
  1981年   17篇
  1980年   9篇
  1975年   8篇
  1974年   6篇
  1973年   7篇
  1971年   4篇
  1936年   5篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
951.
Based on the acoustic radiation theory of a dipole source,the influence of the transducer reception pattern is studied for magnetoacoustic tomography with magnetic induction(MAT-MI).Numerical studies are conducted to simulate acoustic pressures,waveforms,and reconstructed images with unidirectional,omnidirectional,and strong directional transducers.With the analyses of equivalent and projection sources,the influences of the model dimension and the layer effect are qualitatively analyzed to evaluate the performance of MAT-MI.Three-dimensional simulation studies show that the strong directional transducer with a large radius can reduce the influences of equivalent sources,projection sources,and the layer effect effectively,resulting in enhanced pressure and improved image contrast,which is beneficial for boundary pressure extraction in conductivity reconstruction.The reconstructed conductivity contrast images present the conductivity boundaries as stripes with different contrasts and polarities,representing the values and directions of the conductivity changes of the scanned layer.The favorable results provide solid evidence for transducer selection and suggest potential practical applications of MAT-MI in biomedical imaging.  相似文献   
952.
The aim of this work is to discriminate thermoplastic polyester-polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT), which cannot be easily identified by many methods. Both matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were applied to identify these polyesters owing to their analytical ability to determining polymers' chemical structure. The three thermoplastic polyesters can be easily distinguished by MALDI-TOF MS according to their different repeated units. Py-GC/MS was used to analyze their specific pyrolyzates. The three polyesters can be identified through their characteristic pyrolysis products as well.  相似文献   
953.
CaFe2O4/MgFe2O4 nanowires with heterostructure had been successfully synthesized by electrospinning method. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X‐Ray diffraction (XRD), UV–Vis diffuse reflectance spectra (UV‐Vis DR) and Environment scanning electron microscopy (ESEM). The novel CaFe2O4/MgFe2O4 nanowires exhibit an enhanced photocatalytic activity for degrading of tetracycline (TC) under visible light. Compared with bare CaFe2O4 or MgFe2O4 samples, the prepared CaFe2O4/MgFe2O4 (Ca:Mg:Fe = 3:2:10) composited nanowires show the best photocatalytic performance with a degradation efficiency of 40% after 150 min reaction time. This enhancement is attributed to the heterostructure of CaFe2O4/MgFe2O4 nanowires, which effectively repress the recombination of photo‐generated electrons and holes. Based on heterostructure and energy band positions, the enhancement of mechanism under visible‐light enhances the photocatalytic activity.  相似文献   
954.
955.
Stereocomplex-poly(l- and d-lactide) (sc-PLA) and poly(methyl methacrylate) (PMMA) blends were prepared by solution blending at PMMA loadings from 20 to 80 mass%. The miscibility and crystallization behaviors of the blends have been studied in detail by differential scanning calorimeter. The single-glass transition temperatures (T g) of the blends demonstrated that the obtained system was miscible in the amorphous state. It was observed that the crystallization peak temperature of sc-PLA/PMMA blends was marginally lower than that of neat sc-PLA at various cooling rates, indicating the dilution effect of PMMA on the sc-PLA component to restrain the overall crystallization process. In the study of isothermal crystallization kinetics, the reciprocal value of crystallization peak time ( \( t_{\text{p}}^{ - 1} \) ) decreased with increasing PMMA content, indicating that the addition of non-crystalline PMMA inhibited the isothermal crystallization of sc-PLA at an identical crystallization temperature (T c). Moreover, the negative value of Flory–Huggins interaction parameter (χ 12 = ?0.16) of the blend further indicated that sc-PLA and PMMA formed miscible blends.  相似文献   
956.
Efficient enantioselective N? H insertion reactions of secondary and primary anilines were catalyzed by palladium(0) in combination with chiral guanidine derivatives. A broad range of substituted anilines were tolerated, and the corresponding products were obtained in high yield (up to 99 %) with good enantioselectivity (up to 94 % ee) under mild reaction conditions. The N? H insertion mechanism was examined by the study of kinetic isotope effects, control experiments, HRMS, and spectroscopic analysis.  相似文献   
957.
Following a heart attack, more than a billion cardiac muscle cells (cardiomyocytes) can be killed, leading to heart failure and sudden death. Much research in this area is now focused on the regeneration of heart tissue through differentiation of stem cells, proliferation of existing cardiomyocytes and cardiac progenitor cells, and reprogramming of fibroblasts into cardiomyocytes. Different chemical modalities (i.e. methods or agents), ranging from small molecules and RNA approaches (including both microRNA and anti‐microRNA) to modified peptides and proteins, are showing potential to meet this medical need. In this Review, we outline the recent advances in these areas and describe both the modality and progress, including novel screening strategies to identify hits, and the upcoming challenges and opportunities to develop these hits into pharmaceuticals, at which chemistry plays a key role.  相似文献   
958.
Recently, porous hydrophobic/oleophilic materials (PHOMs) have been shown to be the most promising candidates for cleaning up oil spills; however, due to their limited absorption capacity, a large quantity of PHOMs would be consumed in oil spill remediation, causing serious economic problems. In addition, the complicated and time‐consuming process of oil recovery from these sorbents is also an obstacle to their practical application. To solve the above problems, we apply external pumping on PHOMs to realize the continuous collection of oil spills in situ from the water surface with high speed and efficiency. Based on this novel design, oil/water separation and oil collection can be simultaneously achieved in the remediation of oil spills, and the oil sorption capacity is no longer limited to the volume and weight of the sorption material. This novel external pumping technique may bring PHOMs a step closer to practical application in oil spill remediation.  相似文献   
959.
A tunable rhodium‐catalyzed intramolecular alkyne insertion reaction proceeding through the C? C cleavage of benzocyclobutenones is described. Selective formation of either the direct or decarbonylative insertion product can be controlled by using different catalytic systems. A variety of fused β‐naphthol and indene scaffolds were obtained in good yields with high functional group tolerance. This work illustrates a divergent approach to synthesize fused‐ring systems by C? C activation/functionalization.  相似文献   
960.
The rhodium‐catalyzed formation of all‐carbon spirocenters involves a decarbonylative coupling of trisubstituted cyclic olefins and benzocyclobutenones through C? C activation. The metal–ligand combination [{Rh(CO)2Cl}2]/P(C6F5)3 catalyzed this transformation most efficiently. A range of diverse spirocycles were synthesized in good to excellent yields and many sensitive functional groups were tolerated. A mechanistic study supports a hydrogen‐transfer process that occurs through a β‐H elimination/decarbonylation pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号