首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73784篇
  免费   16830篇
  国内免费   5329篇
化学   58568篇
晶体学   650篇
力学   1999篇
综合类   157篇
数学   4827篇
物理学   12404篇
无线电   17338篇
  2024年   169篇
  2023年   987篇
  2022年   1235篇
  2021年   1741篇
  2020年   3169篇
  2019年   4308篇
  2018年   2608篇
  2017年   2098篇
  2016年   5358篇
  2015年   5596篇
  2014年   5778篇
  2013年   6977篇
  2012年   6207篇
  2011年   5352篇
  2010年   5133篇
  2009年   5218篇
  2008年   4884篇
  2007年   4014篇
  2006年   3510篇
  2005年   3438篇
  2004年   2745篇
  2003年   2534篇
  2002年   3208篇
  2001年   2288篇
  2000年   2049篇
  1999年   1139篇
  1998年   613篇
  1997年   527篇
  1996年   492篇
  1995年   431篇
  1994年   347篇
  1993年   290篇
  1992年   268篇
  1991年   237篇
  1990年   189篇
  1989年   138篇
  1988年   118篇
  1987年   86篇
  1986年   79篇
  1985年   81篇
  1984年   62篇
  1983年   38篇
  1982年   33篇
  1981年   34篇
  1980年   19篇
  1979年   13篇
  1976年   11篇
  1975年   16篇
  1973年   9篇
  1971年   9篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
41.
当前锂离子动力电池电化学模型存在模型复杂、建模难度大、计算效率低、老化评估效果差的问题,本文提出一种考虑电池衰退老化的机理模型(ADME).本文首先通过有限差分法对伪二维(P2D)电化学模型进行离散降阶处理,得到简化伪二维(SP2D)模型.在SP2D模型的基础上,基于阴阳两极发生的副反应导致的衰退老化现象,提出一种考虑电池衰退老化的机理模型.其次,使用多变量偏差补偿最小二乘法实现模型参数辨识.最后通过动力电池衰退老化性能循环实验,对比分析了恒流、脉冲工况下SP2D模型和ADME模型的终端电压输出.结果表明:ADME模型较为简单、计算效率和估算精度高,可以有效评估电池容量老化衰退,得到理想的锂离子动力电池外特性曲线.  相似文献   
42.
This paper considers the state‐dependent interference relay channel (SIRC) in which one of the two users may operate as a secondary user and the relay has a noncausal access to the signals from both users. For discrete memoryless SIRC, we first establish the achievable rate region by carefully merging Han‐Kobayashi rate splitting encoding technique, superposition encoding, and Gelfand‐Pinsker encoding technique. Then, based on the achievable rate region that we derive, the capacity of the SIRC is established in many different scenarios including (a) the weak interference regime, (b) the strong interference regime, and (c) the very strong interference regime. This means that our capacity results contain all available known results in the literature. Next, the achievable rate region and the associated capacity results are also evaluated in the case of additive Gaussian noise. Additionally, many numerical examples are investigated to show the value of our theoretical derivations.  相似文献   
43.
Lithium‐rich disordered rock‐salt oxides have attracted great interest owing to their promising performance as Li‐ion battery cathodes. While experimental and theoretical efforts are critical in advancing this class of materials, a fundamental understanding of key property changes upon Li extraction is largely missing. In the present study, single‐crystal synthesis of a new disordered rock‐salt cathode material, Li1.3Ta0.3Mn0.4O2 (LTMO), and its use as a model compound to investigate Li concentration–driven evolution of local cationic ordering, charge compensation, and chemical distribution are reported. Through the combined use of 2D and 3D X‐ray nanotomography, it is shown that Li removal accompanied by oxygen oxidation is correlated with the development of morphological defects such as particle cracking. Chemical heterogeneity, quantified by subparticle level distribution of Mn valence state, is minimal during Mn redox, which drastically increases upon the formation of cracks during oxygen redox. Density functional theory and bond valence sum mismatch calculations reveal the presence of local short‐range ordering in the pristine oxide, which gradually disappears along with the extraction of Li. The study suggests that with cycling the transformation into true cation–disordered state can be expected, which likely impacts the voltage profile and obtainable energy density of the oxide cathodes.  相似文献   
44.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   
45.
The knowledge of turbo code's minimum Hamming distance (dmin) and its corresponding codeword multiplicity (Amin) is of a great importance because the error correction capability of a code is strongly tied to the values of dmin and Amin. Unfortunately, the computational complexity associated with the search for dmin and Amin can be very high, especially for a turbo code that has high dmin value. This paper introduces some useful properties of turbo codes that use structured interleavers together with circular encoding. These properties allow for a significant reduction of search space and thus reduce significantly the computational complexity associated with the determination of dmin and Amin values. © 2014 The Authors. International Journal of Communication Systems published by John Wiley & Sons, Ltd.  相似文献   
46.
Triazines are widely used in agriculture around the world as selective pre‐ and post‐emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
47.
A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase‐supported metal–organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors.  相似文献   
48.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
49.
50.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号