首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5973篇
  免费   248篇
  国内免费   43篇
化学   2689篇
晶体学   53篇
力学   192篇
数学   1388篇
物理学   934篇
无线电   1008篇
  2023年   67篇
  2022年   116篇
  2021年   179篇
  2020年   183篇
  2019年   199篇
  2018年   205篇
  2017年   175篇
  2016年   299篇
  2015年   177篇
  2014年   263篇
  2013年   423篇
  2012年   372篇
  2011年   363篇
  2010年   223篇
  2009年   246篇
  2008年   294篇
  2007年   265篇
  2006年   210篇
  2005年   183篇
  2004年   168篇
  2003年   130篇
  2002年   127篇
  2001年   111篇
  2000年   94篇
  1999年   64篇
  1998年   48篇
  1997年   56篇
  1996年   76篇
  1995年   67篇
  1994年   57篇
  1993年   66篇
  1992年   53篇
  1991年   60篇
  1990年   40篇
  1989年   40篇
  1988年   40篇
  1987年   45篇
  1986年   47篇
  1985年   49篇
  1984年   37篇
  1983年   29篇
  1982年   36篇
  1981年   35篇
  1980年   24篇
  1979年   43篇
  1978年   33篇
  1977年   26篇
  1976年   28篇
  1975年   25篇
  1973年   16篇
排序方式: 共有6264条查询结果,搜索用时 15 毫秒
961.
An approach to the design of nido‐carborane‐based luminescent compounds that can exhibit thermally activated delayed fluorescence (TADF) is proposed. 7,8‐Dicarba‐nido‐undecaboranes (nido‐carboranes) having various 8‐R groups (R=H, Me, i‐Pr, Ph) are appended to the meta or para position of the phenyl ring of the dimesitylphenylborane (PhBMes2) acceptor, forming donor–acceptor compounds (nido‐ m1 – m4 and nido‐ p1 – p4 ). The bulky 8‐R group and meta substitution of the nido‐carborane are essential to attain a highly twisted arrangement between the donor and acceptor moieties, leading to a very small energy splitting between the singlet and triplet excited states (ΔEST <0.05 eV for nido‐ m2 , ‐ m3 , and ‐ p3 ). These compounds exhibit efficient TADF with microsecond‐range lifetimes. In particular, nido‐ m2 and ‐ m3 display aggregation‐induced emission (AIE) with TADF properties.  相似文献   
962.
To tackle the problems associated with membrane protein (MP) instability in detergent solutions, we designed a series of glycosyl‐substituted dicarboxylate detergents (DCODs) in which we optimized the polar head to clamp the membrane domain by including, on one side, two carboxyl groups that form salt bridges with basic residues abundant at the membrane–cytoplasm interface of MPs and, on the other side, a sugar to form hydrogen bonds. Upon extraction, the DCODs 8 b , 8 c , and 9 b preserved the ATPase function of BmrA, an ATP‐binding cassette pump, much more efficiently than reference or recently designed detergents. The DCODs 8 a , 8 b , 8 f , 9 a , and 9 b induced thermal shifts of 20 to 29 °C for BmrA and of 13 to 21 °C for the native version of the G‐protein‐coupled adenosine receptor A2AR. Compounds 8 f and 8 g improved the diffraction resolution of BmrA crystals from 6 to 4 Å. DCODs are therefore considered to be promising and powerful tools for the structural biology of MPs.  相似文献   
963.
Molecular‐level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface‐enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS‐active depth. “Aerosolized plasmonic colloidosomes” (APCs) are introduced as airborne plasmonic hotspots for direct in‐air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100‐fold higher tolerance to laser misalignment along the z‐axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in‐air SERS detection is demonstrated in stand‐off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas.  相似文献   
964.
In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K+ channel proteins are assembled through zinc‐finger protein (ZFP)‐adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP‐fused Kir3 channels and ZFP‐based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K+ channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells.  相似文献   
965.
1-(Dimethylamino)-1-phenyl-1-silacyclohexane 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED), low temperature 13C NMR spectroscopy and quantum-chemical calculations. The predominance of the 1-Phax conformer (1-Pheq:1-Phax ratio of 20:80%, ΔG°(317?K)?=??0.87?kcal/mol) in the gas phase is close to the theoretically estimated conformational equilibrium. In solution, low temperature NMR spectroscopy showed analyzable decoalescence of Cipso and C(1,5) carbon signals in 13C NMR spectra at 103?K. Opposite to the gas state in the freon solution employed (CD2Cl2/CHFCl2/CHFCl2?=?1:1:3), which is still liquid at 100?K, the 1-Pheq conformer was found to be the preferred one [(1-Pheq: 1-Phax?=?77%: 23%, K?=?77/23?=?2.8; ?ΔG°?=??RT ln K (at 103?K)?=?0.44?±?0.1?kcal/mol]. When comparing 1 with 1-phenyl-1-(X)silacylohexanes (X?=?H, Me, OMe, F, Cl), studied so far, the trend of predominance of the Phax conformer in the gas phase and of the Pheq conformer in solution is confirmed.  相似文献   
966.
Journal of Solid State Electrochemistry - Olivine LiFePO4 (LFP) is a promising cathode material for high-rated lithium-ion batteries. However, olivine faced a severe disadvantage of low...  相似文献   
967.
A convergent and stereoselective total synthesis of the previously assigned structure of azaspiracid‐3 has been achieved by a late‐stage Nozaki–Hiyama–Kishi coupling to form the C21?C22 bond with the C20 configuration unambiguously established from l ‐(+)‐tartaric acid. Postcoupling steps involved oxidation to an ynone, modified Stryker reduction of the alkyne, global deprotection, and oxidation of the resulting C1 primary alcohol to the carboxylic acid. The synthetic product matched naturally occurring azaspiracid‐3 by mass spectrometry, but differed both chromatographically and spectroscopically.  相似文献   
968.
A quantum‐tunneling metal‐insulator‐metal (MIM) diode is fabricated by atmospheric pressure chemical vapor deposition (AP‐CVD) for the first time. This scalable method is used to produce MIM diodes with high‐quality, pinhole‐free Al2O3 films more rapidly than by conventional vacuum‐based approaches. This work demonstrates that clean room fabrication is not a prerequisite for quantum‐enabled devices. In fact, the MIM diodes fabricated by AP‐CVD show a lower effective barrier height (2.20 eV) at the electrode–insulator interface than those fabricated by conventional plasma‐enhanced atomic layer deposition (2.80 eV), resulting in a lower turn on voltage of 1.4 V, lower zero‐bias resistance, and better asymmetry of 107.  相似文献   
969.
In the present study, a biomimetic nanoconstruct (BNc) with a multimodal imaging system is engineered using tumor homing natural killer cell membrane (NKM), near‐infrared (NIR) fluorescent dye, and gadolinium (Gd) conjugate‐based magnetic resonance imaging contrast agent onto the surface of a polymeric nanoparticle. The engineered BNc is 110 ± 20 nm in size and showed successful retention of NKM proteins. The magnetic properties of the BNc are found to be tunable from 2.1 ± 0.17 to 5.3 ± 0.5 mm ?1 s?1 under 14.1 T, by adjusting the concentration of Gd‐lipid conjugate onto the surface of the BNc. Confocal imaging and cell sorting analysis reveal a distinguishable cellular interaction of the BNc with MCF‐7 cells in comparison to that of bare polymeric nanoparticles suggesting the tumor homing properties of NKM camouflage system. The in vitro cellular interaction results are further confirmed by in vivo NIR fluorescent tumor imaging and ex vivo MR imaging, respectively. Pharmacokinetics and biodistribution analysis of the BNc show longer circulation half‐life (≈9.5 h) and higher tumor accumulation (10% of injected dose) in MCF‐7 induced tumor‐bearing immunodeficient NU/NU nude mice. Owing to the proven immunosurveillance potential of NK‐cell in the field of immunotherapy, the BNc engineered herein would hold promises in the design consideration of nanomedicine engineering.  相似文献   
970.
Monomeric gold (Au) and silver (Ag) nanoparticle (NP) arrays are self‐assembled uniformly into anodized aluminium oxide (AAO) nanopores with a high homogeneity of greater than 95%, using ultrasonication. The monomeric metal NP array exhibits asymmetric plasmonic absorption due to Fano‐like resonance as interpreted by finite‐difference time‐domain (FDTD) simulation for the numbers up to 127 AuNPs. To examine gap distance‐dependent collective‐plasmonic resonance, the different dimensions of S, M, and L arrays of the AuNP diameters/the gap distances of ≈36 nm/≈66 nm, ≈45 nm/≈56 nm, and ≈77 nm/≈12 nm, respectively, are prepared. Metal NP arrays with an invariable nanogap of ≈50 nm can provide consistent surface‐enhanced Raman scattering (SERS) intensities for Rhodamine 6G (Rh6G) with a relative standard deviation (RSD) of 3.8–5.4%. Monomeric arrays can provide an effective platform for 2D hot‐electron excitation, as evidenced by the SERS peak‐changes of 4‐nitrobenzenethiol (4‐NBT) adsorbed on AgNP arrays with a power density of ≈0.25 mW µm‐2 at 514 and 633 nm. For practical purposes, the bacteria captured by 4‐mercaptophenylboronic acid are found to be easily destroyed under visible laser excitation at 514 nm with a power density of ≈14 mW µm‐2 for 60 min using Ag due to efficient plasmonic‐electron transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号