首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2668篇
  免费   61篇
  国内免费   16篇
化学   1815篇
晶体学   30篇
力学   43篇
数学   427篇
物理学   296篇
无线电   134篇
  2022年   15篇
  2021年   23篇
  2020年   43篇
  2019年   44篇
  2018年   32篇
  2017年   18篇
  2016年   56篇
  2015年   60篇
  2014年   65篇
  2013年   93篇
  2012年   144篇
  2011年   156篇
  2010年   83篇
  2009年   76篇
  2008年   148篇
  2007年   126篇
  2006年   133篇
  2005年   132篇
  2004年   119篇
  2003年   125篇
  2002年   92篇
  2001年   39篇
  2000年   44篇
  1999年   24篇
  1998年   25篇
  1997年   36篇
  1996年   36篇
  1995年   39篇
  1994年   28篇
  1993年   28篇
  1992年   26篇
  1991年   22篇
  1990年   20篇
  1989年   20篇
  1988年   28篇
  1987年   36篇
  1986年   23篇
  1985年   49篇
  1984年   39篇
  1983年   45篇
  1982年   49篇
  1981年   42篇
  1980年   47篇
  1979年   27篇
  1978年   35篇
  1977年   23篇
  1976年   22篇
  1975年   23篇
  1974年   18篇
  1973年   17篇
排序方式: 共有2745条查询结果,搜索用时 10 毫秒
91.
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.  相似文献   
92.
The synthesis of recyclable ionic liquid-supported imidazolidinone catalyst I and its application in 1,3-dipolar cycloaddition of nitrone with α,β-unsaturated aldehyde with high performance were described. Most importantly, the catalyst I can be recovered and recycled for up to five runs without observing significant decrease in catalytic activity.  相似文献   
93.
Temozolomide (TMZ) is the primary chemotherapeutic agent for treatment of glioblastoma multiforme (GBM) yet it has a fast rate of degradation under physiological conditions to the 'active' MTIC, which has poor penetration of the blood-brain barrier and cellular absorption. Herein we have demonstrated binding of TMZ within the cavity of nano-container cucurbit[7]uril, resulting in a decreased rate of drug degradation. Prolonging the lifetime of the TMZ under physiological conditions through encapsulation dramatically improved the drug's activity against primary GBM cell lines as more TMZ could be absorbed by the cells before degradation. This work can potentially lead to increases in the drug's propensity for crossing the blood-brain barrier and absorption into the GBM cells, thereby increasing the efficacy of this chemotherapy.  相似文献   
94.
Poly(hexafluoropropylene oxide), poly(HFPO), networks were prepared from functional polymers by end linking via urethane groups. The prepolymers were characterized by NMR spectroscopy and GPC. The networks were characterized by determination of the number of network chains from the shear modulus, and were snown to contain both trifunctional crosslinks and difunctional links. The properties of the networks were investigated by a range of techniques. Compared with fully-fluorinated networks formed via triazine cross-links, investigated previously, the urethane-linked networks were more readily prepared but were poorer elastomers, were less thermally stable, and were less resistant to swelling by common polar solvents. © 1995 John Wiley & Sons, Inc.  相似文献   
95.
96.
97.
Sulfoxides are frequently used in organic synthesis as chiral auxiliaries and reagents to mediate a wide variety of chemical transformations. For example, diphenyl sulfoxide and triflic anhydride can be used to activate a wide range of glycosyl donors including hemiacetals, glycals and thioglycosides. In this way, an alcohol, enol or sulfide is converted into a good leaving group for subsequent reaction with an acceptor alcohol. However, reaction of diphenyl sulfoxide and triflic anhydride with oxathiane-based thioglycosides, and other oxathianes, leads to a different process in which the thioglycoside is oxidised to a sulfoxide. This unexpected oxidation reaction is very stereoselective and proceeds under anhydrous conditions in which the diphenyl sulfoxide acts both as oxidant and as the source of the oxygen atom. Isotopic labelling experiments support a reaction mechanism that involves the formation of oxodisulfonium (S-O-S) dication intermediates. These intermediates undergo oxygen-exchange reactions with other sulfoxides and also allow interconversion of axial and equatorial sulfoxides in oxathiane rings. The reversibility of the oxygen-exchange reaction suggests that the stereochemical outcome of the oxidation reaction may be under thermodynamic control, which potentially presents a novel strategy for the stereoselective synthesis of sulfoxides.  相似文献   
98.
Reversible hydrogen storage capacity of the La(3-x)Mg(x)Ni(9) alloys, charged by gaseous hydrogen or by electrochemical methods, reaches its maximum at composition La(2)MgNi(9). As (La,Mg)Ni(3-3.5) alloys are the materials used in advanced metal hydride electrodes in Ni-MH batteries, this raises interest in the study of the structure-properties interrelation in the system La(2)MgNi(9)-H(2) (D(2)). In the present work, this system has been investigated by use of in situ synchrotron X-ray and neutron powder diffraction in H(2)/D(2) gas and by performing pressure-composition-temperature measurements. The saturated La(2)MgNi(9)D(13.1) hydride forms via an isotropic expansion and crystallizes with a trigonal unit cell (space group R3m (No.166); a = 5.4151(1) ?; c = 26.584(2) ?; V = 675.10(6) ?(3)). The studied hybrid structure is composed of a stacking of two layers resembling existing intermetallic compounds LaNi(5) (CaCu(5) type) and LaMgNi(4) (Laves type). These are occupied by D to form LaNi(5)D(5.2) and LaMgNi(4)D(7.9). The LaNi(5)D(5.2) slab has a typical structure observed for all reported LaNi(5)-containing hybrid structures of the AB(5) + Laves phase types. However, the Laves type slab LaMgNi(4)D(7.9) is different from the characterized individual LaMgNi(4)D(4.85) hydride. This results from the filling of a greater variety of interstitial sites in the La(2)MgNi(9)D(13)/LaMgNi(4)D(7.9), including MgNi(2), Ni(4), (La/Mg)(2)Ni(2), and (La/Mg)Ni(3), in contrast with individual LaMgNi(4)D(4.85) where only La(2)MgNi(2) and Ni(4) interstitials are occupied. Despite a random distribution of La and Mg in the structure, a local hydrogen ordering takes place with H atoms favoring occupation of two Mg-surrounded sites, triangles MgNi(2) and tetrahedra LaMgNi(2). A directional bonding between Ni, Mg, and hydrogen is observed and is manifested by a formation of the NiH(4) tetrahedra and MgH(6) octahedra, which are connected to each other by sharing H vertexes to form a spatial framework.  相似文献   
99.
Chalcones may be cyclised to the corresponding flavanones by stirring with KF-celite suspended in methanol at reflux. This method gives consistently higher conversion than other reported procedures and its utility is illustrated by the synthesis of the linear prenylated flavanone bavachinin.  相似文献   
100.
Hydrogen-bond (H-bond) interaction energies in α-helices of short alanine peptides were systematically examined by precise density functional theory calculations, followed by a molecular tailoring approach. The contribution of each H-bond interaction in α-helices was estimated in detail from the entire conformation energies, and the results were compared with those in the minimal H-bond models, in which only H-bond donors and acceptors exist with the capping methyl groups. The former interaction energies were always significantly weaker than the latter energies, when the same geometries of the H-bond donors and acceptors were applied. The chemical origin of this phenomenon was investigated by analyzing the differences among the electronic structures of the local peptide backbones of the α-helices and those of the minimal H-bond models. Consequently, we found that the reduced H-bond energy originated from the depolarizations of both the H-bond donor and acceptor groups, due to the repulsive interactions with the neighboring polar peptide groups in the α-helix backbone. The classical force fields provide similar H-bond energies to those in the minimal H-bond models, which ignore the current depolarization effect, and thus they overestimate the actual H-bond energies in α-helices. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号