首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273578篇
  免费   36359篇
  国内免费   26483篇
化学   137837篇
晶体学   2083篇
力学   14525篇
综合类   1271篇
数学   26823篇
物理学   79581篇
无线电   74300篇
  2024年   968篇
  2023年   5562篇
  2022年   7454篇
  2021年   9662篇
  2020年   9346篇
  2019年   8731篇
  2018年   7821篇
  2017年   7578篇
  2016年   10989篇
  2015年   11581篇
  2014年   14098篇
  2013年   18576篇
  2012年   21912篇
  2011年   22327篇
  2010年   16166篇
  2009年   16071篇
  2008年   17104篇
  2007年   15565篇
  2006年   14718篇
  2005年   12828篇
  2004年   9357篇
  2003年   7854篇
  2002年   7023篇
  2001年   6041篇
  2000年   5797篇
  1999年   6445篇
  1998年   5669篇
  1997年   5020篇
  1996年   5258篇
  1995年   4499篇
  1994年   4101篇
  1993年   3395篇
  1992年   3114篇
  1991年   2621篇
  1990年   2091篇
  1989年   1576篇
  1988年   1293篇
  1987年   1025篇
  1986年   940篇
  1985年   835篇
  1984年   615篇
  1983年   478篇
  1982年   395篇
  1981年   297篇
  1980年   235篇
  1979年   147篇
  1978年   134篇
  1977年   140篇
  1976年   135篇
  1973年   126篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
72.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   
73.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   
74.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
75.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   
76.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   
77.
A series of polymer electrolytes based on multiarm polymers and lithium salt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance measurement. The relationships of conductivity with salt concentration, temperature, and arm numbers are discussed. It is suggested that the star polymer has a higher solvency and ion transfer ability on lithium salts than on linear polymers. The conductivity maximum appeared at a higher salt concentration ([EO]/[Li] = 4). Impedance measurement suggested that the optimum conductivity was 2 × 10?4 s · cm?1. The conductivity increased with temperature and the dependence of ionic conductivity on temperature fits the Arrhenius equation. Among the studied systems, the star polymer with a five arm number performs better than other structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4195–4198, 2004  相似文献   
78.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   
79.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   
80.
Based on the complexation between proteins and Cu(II) coupled with the time-resolved chemiluminescence (CL) technique, a highly sensitive and quantitative assay for measuring proteins in solution is described. The complexes of proteins with Cu(II) have a strongly catalytic effect on the luminol-H2O2 CL reaction. Because the CL emission produced by the complexes is much more long-lived than that by Cu(II), the CL signals originating from proteins can be easily identified and measured with a time-resolved technique. On this basis, bovine albumin fraction V (BAF V) can be quantitatively determined in the range of 0.01 - 5.0 microg/ml with a detection limit of 5.8 ng/ml. The results show that the proposed assay exhibits a small variation in the response values for the same amount of different proteins, as compared to the Lowry as well as Bradford assays. The CL assay has also been studied for the detection of immobilized proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号