首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   15篇
  国内免费   21篇
化学   166篇
晶体学   3篇
力学   24篇
综合类   1篇
数学   74篇
物理学   59篇
无线电   76篇
  2024年   2篇
  2023年   8篇
  2022年   14篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2017年   12篇
  2016年   21篇
  2015年   22篇
  2014年   22篇
  2013年   21篇
  2012年   23篇
  2011年   21篇
  2010年   22篇
  2009年   19篇
  2008年   14篇
  2007年   20篇
  2006年   12篇
  2005年   13篇
  2004年   16篇
  2003年   6篇
  2002年   10篇
  2001年   5篇
  2000年   10篇
  1999年   11篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1987年   1篇
  1981年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
401.
Oxygen reduction reaction via the two-electron route (2e ORR) provides a green method for the direct production of hydrogen peroxide (H2O2) along with in situ utilization. The effective catalysts with high ORR activity, 2e selectivity, and stability are essential for the application of this technology. Single-atom catalysts (SACs) have attracted intensively attention for H2O2 electrosynthesis owing to the unique geometric and electronic configurations. In this review, the mechanism and theoretical predictions for 2e ORR over SACs are first introduced. Then, the recent advances of various SACs for the electrosynthesis of H2O2 are documented. And the correlation between the central atom, coordination atoms, and coordination environment of SACs and the corresponding electrocatalytic ORR performance including activity, selectivity, and stability are emphatically analyzed and summarized. Finally, the major challenges and opportunities regarding the future design of SACs for the H2O2 production are pointed out.  相似文献   
402.
Equiatomic binary phases of copper with rare earth (RE) elements exhibit either primitive cubic ( ) or orthorhombic (Pnma) structures and in some cases both. By using density functional theory (DFT), we calculated the enthalpies of formation along the series of RE elements combined equimolarly with copper. For RE from Sc to Lu, the calculated enthalpies of formation fall in the range −49.8 kJ/mol for LuCu to −9.1 kJ/mol for the least thermodynamically stable CeCu. Except NdCu, all the other cubic or orthorhombic compounds exhibit lattice stability. Either forms of NdCu indicated lattice instability. Along the Sc-group, the hypothetical primitive cubic and orthorhombic forms of LuCu are found thermodynamically and mechanically stable. The overall trend of the formation enthalpies as a function of the Meyer Periodic Number is consistent with the energy trend of the 4 f-orbital filling as moving from Sc to Lu monocuprides. In addition, the calculated Gibbs free energies indicate that the thermodynamic stability is largely due to the entropic contributions. All standard DFT calculations were also repeated with DFT+U to better describe the correlation between the 5d–4f and 3d shells of RECu compounds. It has been found that DFT+U slightly affects the enthalpies of formation of RECu binaries. Moreover, DFT+U shifts up the f-band energies of RECu with light RE elements (such as La, Ce and Pr) and in contrast lowers them in the case of RECu with heavy RE elements from Nd to Lu.  相似文献   
403.
The sluggish conversion kinetics and shuttling behavior of lithium polysulfides (LiPSs) seriously deteriorate the practical application of lithium–sulfur (Li–S) batteries. Herein, Ni single atoms on hollow carbon nanosheet-assembled flowers (Ni-NC) are synthesized via a facile pyrolysis-adsorption process to address these challenges. The as-designed Ni-NC with enhanced mesoporosity and accessible surface area can expose more catalytic sites and facilitate electron/ion transfer. These advantages enable the Ni-NC-modified separator to exhibit both enhanced confinement-catalysis ability and suppressed shuttling of LiPSs. Consequently, the Li−S battery with Ni-NC-modified separator shows an initial capacity of 1167 mAh g−1 with a low capacity decay ratio (0.033% per cycle) over 700 cycles at 1 C. Even at the sulfur loading of 6.17 mg cm−2, a high areal capacity of 5.17 mAh cm−2 is realized at 0.1 C, together with superior cycling stability over 300 cycles. This work provides a facile catalyst design strategy for the development of high-performance Li−S batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号