首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1614篇
  免费   56篇
  国内免费   1篇
化学   914篇
晶体学   8篇
力学   42篇
数学   148篇
物理学   354篇
无线电   205篇
  2021年   13篇
  2020年   18篇
  2019年   22篇
  2017年   12篇
  2016年   34篇
  2015年   28篇
  2014年   40篇
  2013年   63篇
  2012年   63篇
  2011年   81篇
  2010年   32篇
  2009年   34篇
  2008年   70篇
  2007年   69篇
  2006年   74篇
  2005年   69篇
  2004年   68篇
  2003年   55篇
  2002年   61篇
  2001年   45篇
  2000年   44篇
  1999年   26篇
  1998年   14篇
  1997年   14篇
  1996年   22篇
  1995年   25篇
  1994年   24篇
  1993年   27篇
  1992年   21篇
  1991年   13篇
  1990年   28篇
  1989年   18篇
  1988年   18篇
  1987年   15篇
  1986年   24篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   16篇
  1981年   27篇
  1980年   12篇
  1979年   20篇
  1978年   13篇
  1977年   20篇
  1976年   17篇
  1975年   23篇
  1974年   25篇
  1973年   17篇
  1972年   23篇
  1967年   13篇
排序方式: 共有1671条查询结果,搜索用时 750 毫秒
61.
High-resolution X-ray diffraction data have been collected on the cubic polymorph of antimony(III) oxide (senarmontite) to determine the charge distribution in the crystal. The results are in quantitative agreement with crystal Hartree-Fock calculations for this polymorph, and have been compared with theoretical calculations on the orthorhombic polymorph (valentinite). Information about the nature of bonding and relative bond strengths in the two polymorphs has been extracted in a straightforward manner via topological analysis of the electron density. All the close contacts in both polymorphs are found to be similar in nature based on the value of the Laplacian, the magnitude of the electron density and the local energy density at the bond critical points, and these characterise the observed interactions as substantially polar covalent, similar to molecular calculation results on Si-O and Ge-O. Electrostatic potential isosurfaces reveal the octopolar nature of this function for senarmontite, and shed light on the observed packing arrangement of Sb4O6 molecules in the crystal.  相似文献   
62.
We have devised methods in which cross-polarization magic-angle spinning (CP-MAS) solid-state NMR is exploited to measure rigorous parameters for binding of (13)C-labeled substrates to membrane transport proteins. The methods were applied to two proteins from Escherichia coli: a nucleoside transporter, NupC, and a glucuronide transporter, GusB. A substantial signal for the binding of methyl [1-(13)C]-beta-d-glucuronide to GusB overexpressed in native membranes was achieved with a sample that contained as little as 20 nmol of GusB protein. The data were fitted to yield a K(D) value of 4.17 mM for the labeled ligand and 0.42 mM for an unlabeled ligand, p-nitrophenyl beta-d-glucuronide, which displaced the labeled compound. CP-MAS was also used to measure binding of [1'-(13)C]uridine to overexpressed NupC. The spectrum of NupC-enriched membranes containing [1'-(13)C]uridine exhibited a large peak from substrate bound to undefined sites other than the transport site, which obscured the signal from substrate bound to NupC. In a novel application of a cross-polarization/polarization-inversion (CPPI) NMR experiment, the signal from undefined binding was eliminated by use of appropriate inversion pulse lengths. By use of CPPI in a titration experiment, a K(D) value of 2.6 mM was determined for uridine bound to NupC. These approaches are broadly applicable to quantifying binding of substrates, inhibitors, drugs, and antibiotics to numerous membrane proteins.  相似文献   
63.
Molecular recognition between molecules is one of the most fundamental processes in biology and chemistry. The recognition process is largely driven by non-covalent forces such as hydrogen bonding, electrostatics, van der Waals forces, pi-pi interactions, and conformational energy. The complementarity between the receptor and substrate is very similar to the "lock and key" function, first described by Emil Fischer over 100 years ago, - the lock being the molecular receptor such as a protein or enzyme and the key being the substrate such as a drug, that is recognized to give a defined receptor-substrate complex. This review focuses on the design of specific ligand systems as "Keys" to enable the induced fit of these keys into the target macromolecules, protein/enzyme (Locks) with particular emphasis on protein recognition.  相似文献   
64.
Summary The quantitative use of high speed capillary electrophoresis (HSCE) is examined by applying high voltages across short capillaries. Acceptable performance in terms of injection precision and migration times were achieved within 1–2 minute analysis times. HSCE was used for the novel CE application of dissolution test sample solution analysis. The results generated by HSCE compared well with those generated using validated on-line UV absorbance measurements. It is concluded that HSCE is a viable alternative and supplement to standard analytical methods employed in dissolution test analysis.  相似文献   
65.
The reactions between cis-Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2) (1) or cis-Fe(PP3)H2 (PP3 = P(CH2CH2PMe2)3) (2) and carbon dioxide (CO2), carbon disulfide (CS2), and carbonyl sulfide (COS) are investigated. At 300 K, additions of CO2 (1 atm), CS2 (2 equiv), and COS (1 atm) to 1 result in the formation of a stable transformato hydride, trans-Fe(dmpe)2(OCHO)H (3a), a trans-dithioformato hydride, trans-Fe(dmpe)2(SCHS)H (4a), and a trans-thioformato hydride, trans-Fe(dmpe)2(SCHO)H (5a), respectively. When CS2 and COS are added to cis-Fe(dmpe)2H2 at 195 K, a cis-dithioformato hydride, 4b, and a cis-thioformato hydride, 5b, respectively, are observed as the initially formed products, but there is no evidence of the corresponding cis-formato hydride upon addition of CO2 to cis-Fe(dmpe)2H2. Additions of excess CO2, CS2, and COS to 1 at lower temperatures (195-240 K) result in the formation of a trans-bis(formate), trans-Fe(dmpe)2(OCHO)2 (3b), a trans-bis(dithioformate), trans-Fe(dmpe)2(SCHS)2 (4c), and a cis-bis(thioformate), cis-Fe(dmpe)2(SCHO)2 (5c), respectively. trans-Fe(dmpe)2(SCHO)2 (5d) is prepared by the addition of excess COS at 300 K. Additions of CO2 (1 atm), CS2 (0.75 equiv), and COS (1 atm) to 2 at 300 K result in the formation of a thermally stable, geometrically constrained cis-formato hydride, cis-Fe(PP3)(OCHO)H (6a), a cis-dithioformato hydride, cis-Fe(PP3)(SCHS)H (7a), and a cis-thioformato hydride, cis-Fe(PP3)(SCHO)H (8a), respectively. Additions of excess CO2 and COS to 2 yield a cis-bis(formate), cis-Fe(PP3)(OCHO)2 (6b), and a thermally stable cis-bis(thioformate), cis-Fe(PP3)(SCHO)2 (8b), respectively. All complexes are characterized by multinuclear NMR spectroscopy, with IR spectroscopy and elemental analyses confirming structures of thermally stable complexes where possible. Complexes 3b and 5a are also characterized by X-ray crystallography.  相似文献   
66.
The synthesis and variable temperature 1H and 13C NMR spectra of three tetrahydro-1,2,4-oxadiazines are reported. The N(4)-Me inversion barriers are 6.8–7.0 (ax→ts) and 7.4–7.9 kcal mol?1 (eq→ts) with ΔG° 0.6–0.9 kcal mol?1. The N(2)-Me inversion barriers are 10.4–11.4 (ax→ts) and 11.6–13.1 kcal mol?1 (eq→ts) with ΔGδ 1.2–1.7 kcal mol?1. The barrier to ring inversion is ca. 12.7 kcal mol?1. “R value” analysis shows the ring to have a 56.5±2δ dihedral angle about the C(5)-(6) bond, indicative of the expected chair conformation.  相似文献   
67.
Three conducting BEDT-TTF charge-transfer salts with tris(oxalato)metallate anions have unit cells containing both[small alpha] and [small beta][double prime] donor packing motifs.  相似文献   
68.
69.
70.
A direct digital synthesizer (DDS) implemented in InP double heterojunction bipolar transistor (DHBT) technology is reported. The DDS has a ROM-less architecture and instead uses digital logic for phase conversion. The DDS operates up to a 13 GHz clock rate and is capable of synthesizing output frequencies up to 6.5 GHz. Measured spurious free dynamic range (SFDR)ranged from 34 dBc at low frequency control words (FCWs) to 26.67 dBc at high FCWs. The test circuit is implemented with 1646 transistors and consumes 5.42W of power  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号