首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   59篇
  国内免费   15篇
化学   979篇
晶体学   9篇
力学   40篇
数学   323篇
物理学   220篇
无线电   174篇
  2023年   11篇
  2022年   36篇
  2021年   47篇
  2020年   57篇
  2019年   49篇
  2018年   29篇
  2017年   28篇
  2016年   44篇
  2015年   36篇
  2014年   62篇
  2013年   70篇
  2012年   98篇
  2011年   110篇
  2010年   56篇
  2009年   63篇
  2008年   78篇
  2007年   104篇
  2006年   96篇
  2005年   76篇
  2004年   82篇
  2003年   64篇
  2002年   66篇
  2001年   24篇
  2000年   28篇
  1999年   21篇
  1998年   8篇
  1997年   16篇
  1996年   15篇
  1995年   25篇
  1994年   28篇
  1993年   12篇
  1992年   17篇
  1991年   8篇
  1990年   12篇
  1989年   6篇
  1988年   9篇
  1987年   14篇
  1986年   13篇
  1985年   13篇
  1984年   11篇
  1983年   12篇
  1982年   8篇
  1981年   16篇
  1979年   6篇
  1977年   7篇
  1976年   6篇
  1975年   11篇
  1974年   6篇
  1973年   6篇
  1969年   5篇
排序方式: 共有1745条查询结果,搜索用时 15 毫秒
161.
In this contribution, the authors provide a proof of principle for quantitative imaging of concealed objects on the human body using millimeter waves. A two-and-a-half-dimensional (2.5D) quantitative millimeter wave imaging algorithm is applied to reconstruct a hidden dielectric object on a clothed simplified human body model. At millimeter wave frequencies, the incident field is typically a fully three-dimensional (3D) Gaussian beam, illuminating only a limited spot on the body. Due to the large dimensions of the human body in terms of wavelengths, a 3D discretization is hardly feasible. Therefore, it is assumed that the electromagnetic properties of the body do not significantly change within the illuminated spot, along the longitudinal direction of a person. Hence, only the cross-section of a human body model is discretized. This 2.5D assumption however is still not sufficient to reduce the forward problem to a feasible size. Therefore, a priori knowledge on the illumination and on the scattering properties of the clothed human body is used to deduce a simplified model to describe the cross-section of the clothed human abdomen. The complex permittivity profile of a small dielectric object, hidden underneath clothing and representing some type of explosive, is reconstructed. The complex permittivity profiles of all other scatterers are assumed to be known. The presented quantitative inverse scattering algorithm is based on a Newton-type optimization, combined with an approximate line search and regularized by applying Stepwise Relaxed Value Picking regularization. The input data of the quantitative inverse scattering problem are synthetic scattering data since the authors are not aware of any amplitude and phase measurement data for concealed weapon detection yet made available to the inversion community at these high frequencies.  相似文献   
162.
This study investigated how native language background interacts with speaking style adaptations in determining levels of speech intelligibility. The aim was to explore whether native and high proficiency non-native listeners benefit similarly from native and non-native clear speech adjustments. The sentence-in-noise perception results revealed that fluent non-native listeners gained a large clear speech benefit from native clear speech modifications. Furthermore, proficient non-native talkers in this study implemented conversational-to-clear speaking style modifications in their second language (L2) that resulted in significant intelligibility gain for both native and non-native listeners. The results of the accentedness ratings obtained for native and non-native conversational and clear speech sentences showed that while intelligibility was improved, the presence of foreign accent remained constant in both speaking styles. This suggests that objective intelligibility and subjective accentedness are two independent dimensions of non-native speech. Overall, these results provide strong evidence that greater experience in L2 processing leads to improved intelligibility in both production and perception domains. These results also demonstrated that speaking style adaptations along with less signal distortion can contribute significantly towards successful native and non-native interactions.  相似文献   
163.
The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.  相似文献   
164.
We tested the performance of several (13)C homonuclear mixing sequences on perdeuterated microcrystalline ubiquitin. All sequences were applied without (1)H decoupling and at relatively low MAS frequencies. We found that RFDR gave the highest overall transfer efficiency and that DREAM performs surprisingly well under these conditions being twice as efficient in the aliphatic region of the spectrum than the other mixing sequences tested.  相似文献   
165.
In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable characteristics for triage, including independence from confounding biologic factors, a non-invasive measurement procedure, the capability to make measurements at any time after the event, suitability for use by non-expert operators at the site of an event, and the ability to provide immediate estimates of individual doses. Throughout development there has been a particular focus on the need for a deployable system, including instrumental requirements for transport and field use, the need for high throughput, and use by minimally trained operators.Numerous measurements have been performed using this system in clinical and other non-laboratory settings, including in vivo measurements with unexposed populations as well as patients undergoing radiation therapies. The collection and analyses of sets of three serially-acquired spectra with independent placements of the resonator, in a data collection process lasting approximately five minutes, provides dose estimates with standard errors of prediction of approximately 1 Gy. As an example, measurements were performed on incisor teeth of subjects who had either received no irradiation or 2 Gy total body irradiation for prior bone marrow transplantation; this exercise provided a direct and challenging test of our capability to identify subjects who would be in need of acute medical care.  相似文献   
166.
We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ~70?°C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ? R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ~200 ? (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ~ 195?° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.  相似文献   
167.

Objective

To determine the accuracy of magnetic resonance spectroscopy (MRS), perfusion MR imaging (MRP), or volume modeling in distinguishing tumor progression from radiation injury following radiotherapy for brain metastasis.

Methods

Twenty-six patients with 33 intra-axial metastatic lesions who underwent MRS (n=41) with or without MRP (n=32) after cranial irradiation were retrospectively studied. The final diagnosis was based on histopathology (n=4) or magnetic resonance imaging (MRI) follow-up with clinical correlation (n=29). Cho/Cr (choline/creatinine), Cho/NAA (choline/N-acetylaspartate), Cho/nCho (choline/contralateral normal brain choline) ratios were retrospectively calculated for the multi-voxel MRS. Relative cerebral blood volume (rCBV), relative peak height (rPH) and percentage of signal-intensity recovery (PSR) were also retrospectively derived for the MRPs. Tumor volumes were determined using manual segmentation method and analyzed using different volume progression modeling. Different ratios or models were tested and plotted on the receiver operating characteristic curve (ROC), with their performances quantified as area under the ROC curve (AUC). MRI follow-up time was calculated from the date of initial radiotherapy until the last MRI or the last MRI before surgical diagnosis.

Results

Median MRI follow-up was 16 months (range: 2-33). Thirty percent of lesions (n=10) were determined to be radiation injury; 70% (n=23) were determined to be tumor progression. For the MRS, Cho/nCho had the best performance (AUC of 0.612), and Cho/nCho >1.2 had 33% sensitivity and 100% specificity in predicting tumor progression. For the MRP, rCBV had the best performance (AUC of 0.802), and rCBV >2 had 56% sensitivity and 100% specificity. The best volume model was percent increase (AUC of 0.891); 65% tumor volume increase had 100% sensitivity and 80% specificity.

Conclusion

Cho/nCho of MRS, rCBV of MRP, and percent increase of MRI volume modeling provide the best discrimination of intra-axial metastatic tumor progression from radiation injury for their respective modalities. Cho/nCho and rCBV appear to have high specificities but low sensitivities. In contrast, percent volume increase of 65% can be a highly sensitive and moderately specific predictor for tumor progression after radiotherapy. Future incorporation of 65% volume increase as a pretest selection criterion may compensate for the low sensitivities of MRS and MRP.  相似文献   
168.
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号