首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   11篇
  国内免费   2篇
化学   111篇
晶体学   2篇
力学   7篇
数学   17篇
物理学   83篇
无线电   60篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   12篇
  2015年   3篇
  2014年   10篇
  2013年   33篇
  2012年   7篇
  2011年   15篇
  2010年   7篇
  2009年   8篇
  2008年   21篇
  2007年   16篇
  2006年   7篇
  2005年   17篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   11篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1945年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
For a space X, let E k (X), E k s (X) and E k ?? (X) denote respectively the set of Euler classes of oriented k-plane bundles over X, the set of Euler classes of stably trivial k-plane bundles over X and the spherical classes in H k (X; ?). We prove some general facts about the sets E k (X), E k s (X) and E k ?? (X). We also compute these sets in the cases where X is a projective space, the Dold manifold P(m, 1) and obtain partial computations in the case that X is a product of spheres.  相似文献   
105.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   
106.
Cavitation holds the promise of a new and exciting approach to fabricate both top down and bottom up nanostructures. Cavitation bubbles are created when a liquid boils under less than atmospheric pressure. The collapse process occurs supersonically and generates a host of physical and chemical effects. We have made an attempt to fabricate natural cellulose material using hydrodynamic as well as acoustic cavitation. The cellulose material having initial size of 63 micron was used for the experiments. 1% (w/v) slurry of cellulose sample was circulated through the hydrodynamic cavitation device or devices (orifice) for 6 h. The average velocity of the fluid through the device was 10.81 m/s while average pressure applied was 7.8 kg/cm2. Cavitation number was found to be 2.61. The average particle size obtained after treatment was 1.36 micron. This hydrodynamically processed sample was sonicated for 1 h 50 min. The average size of ultrasonically processed particles was found to be 301 nm. Further, the cellulose particles were characterized with X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to see the effect of cavitation on crystallinity (Xc) as well as on melting temperature (Tm). Cellulose structures consist of amorphous as well as crystalline regions. The initial raw sample was 86.56% crystalline but due to the effect of cavitation, the crystallinity reduced to 37.76%. Also the melting temperature (Tm) was found to be reduced from 101.78 °C of the original to 60.13 °C of the processed sample. SEM images for the cellulose (processed and unprocessed) shows the status and fiber–fiber alignment and its orientation with each other. Finally cavitation has proved to be very efficient tool for reduction in size from millimeter to nano scale for highly crystalline materials.  相似文献   
107.
Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.  相似文献   
108.
Qualitative explanation for a homogeneous nucleation of acoustic cavitation bubbles in the incompressible liquid water with simple phenomenological approach has been provided via the concept of the desorbtion of the dissolved gas and the vaporization of local liquid molecules. The liquid medium has been viewed as an ensemble of lattice structures. Validity of the lattice structure approach against the Brownian motion of molecules in the liquid state has been discussed. Criterion based on probability for nucleus formation has been defined for the vaporization of local liquid molecules. Energy need for the enthalpy of vaporization has been considered as an energy criterion for the formation of a vaporous nucleus. Sound energy, thermal energy of the liquid bulk (Joule-Thomson effect) and free energy of activation, which is associated with water molecules in the liquid state (Brownian motion) as per the modified Eyring's kinetic theory of liquid are considered as possible sources for the enthalpy of vaporization of water molecules forming a single unit lattice. The classical nucleation theory has then been considered for expressing further growth of the vaporous nucleus against the surface energy barrier. Effect of liquid property (temperature), and effect of an acoustic parameter (frequency) on an acoustic cavitation threshold pressure have been discussed. Kinetics of nucleation has been considered.  相似文献   
109.
A RhIII‐catalyzed strategy was developed for the rapid construction of highly substituted 2‐pyridone scaffolds using α,β‐unsaturated oximes and fluorinated diazomalonate. The reaction proceeds through direct, site‐selective alkylation based on migratory insertion and subsequent cyclocondensation. A wide substrate scope with different functional groups was explored. The requirement of fluorinated diazomalonate was explored for this transformation. The developed methodology was further extended with the synthesis of the bioactive compound.  相似文献   
110.
An efficient pot-economic and step-economic RhIII-catalyzed site-selective direct amination/annulation strategy was developed for the synthesis of benzophenanthroline derivatives using quinoline N-oxides and anthranils. The method was further extended to the synthesis of nitrogen-containing extended π-conjugated benzophenanthrolinone derivatives. Late-stage functionalizations of cinchonidine and cinchophen derivatives and synthesis of a bioactive quinolino-indole were achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号