首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   70篇
  国内免费   1篇
化学   870篇
晶体学   8篇
力学   13篇
数学   138篇
物理学   116篇
无线电   56篇
  2023年   14篇
  2022年   14篇
  2021年   31篇
  2020年   42篇
  2019年   40篇
  2018年   30篇
  2017年   23篇
  2016年   64篇
  2015年   35篇
  2014年   38篇
  2013年   57篇
  2012年   118篇
  2011年   98篇
  2010年   50篇
  2009年   48篇
  2008年   71篇
  2007年   71篇
  2006年   75篇
  2005年   59篇
  2004年   42篇
  2003年   33篇
  2002年   26篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   8篇
  1995年   4篇
  1994年   4篇
  1992年   5篇
  1991年   2篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1975年   4篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
  1969年   2篇
  1962年   2篇
  1942年   2篇
排序方式: 共有1201条查询结果,搜索用时 15 毫秒
31.
32.
Water‐dispersible, polymer‐wrapped nanocrystals are highly sought after for use in biology and chemistry, from nanomedicine to catalysis. The hydrophobicity of their native ligand shell, however, is a significant barrier to their aqueous transfer as single particles. Ligand exchange with hydrophilic small molecules or, alternatively, wrapping over native ligands with amphiphilic polymers is widely employed for aqueous transfer; however, purification can be quite cumbersome. We report here a general two‐step method whereby reactive stripping of native ligands is first carried out using trialkyloxonium salts to reveal a bare nanocrystal surface. This is followed by chemically directed immobilization of a hydrophilic polymer coating. Polyacrylic acids, with side‐chain grafts or functional end groups, were found to be extremely versatile in this regard. The resulting polymer‐wrapped nanocrystal dispersions retained much of the compact size of their bare nanocrystal precursors, highlighting the unique role of monomer side‐chain functionality to serve as effective, conformal ligation motifs. As such, they are well poised for applications where tailored chemical functionality at the nanocrystal's periphery or improved access to their surfaces is desirable. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
33.
34.
35.
As the addition of low concentrations of oxygen can favor the initial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds, this work verified the applicability of the microaerobic technology to enhance BTEX removal in an anaerobic bioreactor supplemented with high and low co-substrate (ethanol) concentrations. Additionally, structural alterations on the bioreactor microbiota were assessed throughout the experiment. The bioreactor was fed with a synthetic BTEX-contaminated water (~ 3 mg L?1 of each compound) and operated at a hydraulic retention time of 48 h. The addition of low concentrations of oxygen (1.0 mL min?1 of atmospheric air at 27 °C and 1 atm) assured high removal efficiencies (> 80%) for all compounds under microaerobic conditions. In fact, the applicability of this technology showed to be viable to enhance BTEX removal from contaminated waters, especially concerning benzene (with a 30% removal increase), which is a very recalcitrant compound under anaerobic conditions. However, high concentrations of ethanol adversely affected BTEX removal, especially benzene, under anaerobic and microaerobic conditions. Finally, although bacterial community richness decreased at low concentrations of ethanol, in general, the bioreactor microbiota could deal with the different operational conditions and preserved its functionality during the whole experiment.  相似文献   
36.
Cation exchange polymeric matrices are widely used in water treatment protocols to reduce the mineral content of hard waters, even for human consumption. However, they are not antibacterial and flowing bacteria can be trapped in their structures and proliferate, thus acting as microbial contamination sources. Here, Ag@Co‐nanoparticles (Ag@Co‐NPs) with a low‐cost superparamagnetic Co0‐core and an antibacterial Ag‐shell are synthesized on granulated cation exchange polymeric matrices under soft reaction conditions. The presence of these NPs provides the final nanocomposite (NC) with additional functionalities (superparamagnetism and antibacterial activity) making it ideal for water purification applications. Ag@Co‐NPs are synthesized in situ on four cation exchange polymeric matrices containing either strong (sulfonic) or weak (carboxylic) acid functional groups homogeneously distributed (C‐type) or concentrated on an external shell (SST‐type) by the intermatrix synthesis (IMS) method. The NCs are characterized (metal content, NP size and distribution, metal oxidative state, and metal release) and evaluated for water purification applications.  相似文献   
37.
38.
A convenient methodology for the synthesis of mono- and di-halogenated benzo[b]thiophenes is described herein, which utilizes copper(II) sulfate pentahydrate and various sodium halides in the presence of substituted 2-alkynylthioanisoles. The proposed method is facile, uses ethanol as a green solvent, and results in uniquely substituted benzo[b]thiophene structures with isolated yields up to 96%. The most useful component of this methodology is the selective introduction of bromine atoms at every available position (2–7) around the benzo[b]thiophene ring, while keeping position 3 occupied by a specific halogen atom such as Cl, Br or I. Aromatic halogens are useful reactive handles; therefore, the selective introduction of halogens at specific positions would be valuable in the targeted synthesis of bioactive molecules and complex organic materials via metal-catalyzed cross coupling reactions. This work is a novel approach towards the synthesis of dihalo substituted benzo[b]thiophene core structures, which provides a superior alternative to the current methods discussed herein.  相似文献   
39.
Metallamacrocylic tetraruthenium complexes were generated by treatment of 1,4‐divinylphenylene‐bridged diruthenium complexes with functionalized 1,3‐benzene dicarboxylic acids and characterized by HR ESI‐MS and multinuclear NMR spectroscopy. Every divinylphenylene diruthenium subunit is oxidized in two consecutive one‐electron steps with half‐wave potential splittings in the range of 250 to 330 mV. Additional, smaller redox‐splittings between the +/2+ and 0/+ and the 3+/4+ and 2+/3+ redox processes, corresponding to the first and the second oxidations of every divinylphenylene diruthenium entity, are due to electrostatic effects. The lack of electronic coupling through bond or through space is explained by the nodal properties of the relevant molecular orbitals and the lateral side‐by‐side arrangement of the divinylphenylene linkers. The polyelectrochromic behavior of the divinylphenylene diruthenium precursors is retained and even amplified in these metallamacrocyclic structures. EPR studies down to T=4 K indicate that the dications 1‐H2+ and 1‐OBu2+ are paramagnetic. The dications and the tetracation of macrocycle 3‐H display intense (dications) or weak ( 3‐H4+ ) EPR signals. Quantum chemical calculations indicate that the four most stable conformers of the macrocycles are largely devoid of strain. Bond parameters, energies as well as charge and spin density distributions of model macrocycle 5‐HMe were calculated for the different charge and spin states.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号