首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   24篇
  国内免费   3篇
化学   125篇
晶体学   10篇
力学   12篇
数学   19篇
物理学   72篇
无线电   96篇
  2024年   3篇
  2023年   9篇
  2022年   13篇
  2021年   20篇
  2020年   15篇
  2019年   14篇
  2018年   12篇
  2017年   9篇
  2016年   24篇
  2015年   9篇
  2014年   18篇
  2013年   17篇
  2012年   27篇
  2011年   24篇
  2010年   9篇
  2009年   8篇
  2008年   24篇
  2007年   20篇
  2006年   15篇
  2005年   7篇
  2004年   3篇
  2003年   8篇
  2002年   9篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有334条查询结果,搜索用时 296 毫秒
111.
Alkenyl bromides were found to be useful reactants for the palladium-catalysed direct C-H activation/functionalisation reaction of heteroaromatics such as benzoxazole or benzothiazole. Moderate to good yields of coupling products were obtained using both α- and β-substituted alkenyl bromides or even the trisubstituted alkenyl bromide 2-bromo-3-methylbut-2-ene. This reaction is environmentally attractive as it provides only HX associated to the base as a by-product.  相似文献   
112.
Dissociative electron attachment (DEA) cross sections for simple organic molecules, namely, acetic acid, propanoic acid, methanol, ethanol, and n-propyl amine are measured in a crossed beam experiment. We find that the H(-) ion formation is the dominant channel of DEA for these molecules and takes place at relatively higher energies (>4 eV) through the core excited resonances. Comparison of the cross sections of the H(-) channel from these molecules with those from NH(3), H(2)O, and CH(4) shows the presence of functional group dependence in the DEA process. We analyze this new phenomenon in the context of the results reported on other organic molecules. This discovery of functional group dependence has important implications such as control in electron induced chemistry and understanding radiation induced damage in biological systems.  相似文献   
113.
Polymer semiconductors provide unique possibilities and flexibility in tailoring their optoelectronic properties to match specific application demands. The recent development of semicrystalline polymers with strongly improved charge transport properties forces a review of the current understanding of the charge transport mechanisms and how they relate to the polymer's chemical and structural properties. Here, the charge density dependence of field effect mobility in semicrystalline polymer semiconductors is studied. A simultaneous increase in mobility and its charge density dependence, directly correlated to the increase in average crystallite size of the polymer film, is observed. Further evidence from charge accumulation spectroscopy shows that charges accumulate in the crystalline regions of the polymer film and that the increase in crystallite size affects the average electronic orbitals delocalization. These results clearly point to an effect that is not caused by energetic disorder. It is instead shown that the inclusion of short range coulomb repulsion between charge carriers on nanoscale crystalline domains allows describing the observed mobility dependence in agreement with the structural and optical characterization. The conclusions that are extracted extend beyond pure transistor characterization and can provide new insights into charge carrier transport for regimes and timescales that are relevant to other optoelectronic devices.  相似文献   
114.
115.
Decentralized stochastic control refers to the multi-stage optimization of a dynamical system by multiple controllers that have access to different information. Decentralization of information gives rise to new conceptual challenges that require new solution approaches. In this expository paper, we use the notion of an information-state to explain the two commonly used solution approaches to decentralized control: the person-by-person approach and the common-information approach.  相似文献   
116.
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API–carrier mixture and the principal API–carrier non-bonding interactions are critical factors for rational drug development and formulation decisions. Experimental determination of these interactions, solubility, and dissolution mechanisms is time-consuming, costly, and reliant on trial and error. To that end, molecular modeling has been applied to simulate ASD properties and mechanisms. Quantum mechanical methods elucidate the strength of API–carrier non-bonding interactions, while molecular dynamics simulations model and predict ASD physical stability, solubility, and dissolution mechanisms. Statistical learning models have been recently applied to the prediction of a variety of drug formulation properties and show immense potential for continued application in the understanding and prediction of ASD solubility. Continued theoretical progress and computational applications will accelerate lead compound development before clinical trials. This article reviews in silico research for the rational formulation design of low-solubility drugs. Pertinent theoretical groundwork is presented, modeling applications and limitations are discussed, and the prospective clinical benefits of accelerated ASD formulation are envisioned.  相似文献   
117.
Kulkarni A  Zhou W  Török B 《Organic letters》2011,13(19):5124-5127
An environmentally benign procedure for the hydrogenation of unprotected indoles is described. The hydrogenation reaction is catalyzed by Pt/C and activated by p-toluenesulfonic acid in water as a solvent. The efficacy of the method is illustrated by the hydrogenation of a variety of substituted indoles to their corresponding indolines which were obtained in excellent yields.  相似文献   
118.
The conversion of cis-2-butene with deuterium over a well-defined Pd/Fe(3)O(4) model catalyst was studied by isothermal pulsed molecular beam (MB) experiments under ultra high vacuum conditions. This study focuses on the processes related to dissociative hydrogen adsorption and diffusion into the subsurface of Pd nanoparticles and their influence on the activity and selectivity toward competing cis-trans isomerization and hydrogenation pathways. The reactivity was studied both under steady state conditions and in the transient regime, in which the reaction takes place on a D-saturated catalyst, over a large range of reactant pressures and reaction temperatures. We show that large olefin coverages negatively affect the abundance of D species, as indicated by a reduction of both reaction rates under steady state conditions as compared to the transient reactivity on the catalyst pre-saturated with D(2). Limitations in D availability during the steady state lead to a very weak dependence of both reaction rates on the olefin pressure. In contrast, when the surface is initially saturated with D, the transient reaction rates of both pathways exhibit positive kinetic orders on the butene pressure. Cis-trans isomerization and hydrogenation show kinetic orders of +0.7 and +1.0 on the D(2) pressure, respectively. Increasing availability of D noticeably shifts the selectivity toward hydrogenation. These observations together with the analysis of the transient reaction behavior suggest that the activity and selectivity of the catalyst is strongly controlled by its ability to build up and maintain a sufficiently high concentration of D species under reaction conditions. The temperature dependence of the reaction rates indicates that higher activation energies are required for the hydrogenation pathway than for the cis-trans isomerization pathway, implying that different rate limiting steps are involved in the competing reactions.  相似文献   
119.
Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions.  相似文献   
120.
An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β‐disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and provides products in up to 99 % enantiomeric excess, with good yields. Based on this strategy, (?)‐α‐cuparenone has been prepared in only two steps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号