首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4898篇
  免费   206篇
  国内免费   32篇
化学   3249篇
晶体学   37篇
力学   76篇
数学   623篇
物理学   869篇
无线电   282篇
  2023年   34篇
  2022年   67篇
  2021年   113篇
  2020年   113篇
  2019年   104篇
  2018年   97篇
  2017年   68篇
  2016年   173篇
  2015年   146篇
  2014年   171篇
  2013年   260篇
  2012年   331篇
  2011年   413篇
  2010年   201篇
  2009年   173篇
  2008年   286篇
  2007年   280篇
  2006年   270篇
  2005年   237篇
  2004年   189篇
  2003年   171篇
  2002年   151篇
  2001年   60篇
  2000年   74篇
  1999年   45篇
  1998年   33篇
  1997年   44篇
  1996年   66篇
  1995年   55篇
  1994年   28篇
  1993年   39篇
  1992年   38篇
  1991年   37篇
  1990年   28篇
  1989年   28篇
  1988年   32篇
  1987年   18篇
  1986年   24篇
  1985年   38篇
  1984年   23篇
  1983年   23篇
  1982年   36篇
  1981年   31篇
  1980年   31篇
  1979年   24篇
  1978年   28篇
  1977年   18篇
  1975年   20篇
  1974年   15篇
  1973年   22篇
排序方式: 共有5136条查询结果,搜索用时 350 毫秒
971.
972.
In this study, in silico mutagenesis and docking in Ralstonia solanacearum lectin (RSL) were carried out, and the ability of several docking software programs to calculate binding affinity was evaluated. In silico mutation of six amino acid residues (Agr17, Glu28, Gly39, Ala40, Trp76, and Trp81) was done, and a total of 114 in silico mutants of RSL were docked with Me-α-L-fucoside. Our results show that polar residues Arg17 and Glu28, as well as nonpolar amino acids Trp76 and Trp81, are crucial for binding. Gly39 may also influence ligand binding because any mutations at this position lead to a change in the binding pocket shape. The Ala40 residue was found to be the most interesting residue for mutagenesis and can affect the selectivity and/or affinity. In general, the docking software used performs better for high affinity binders and fails to place the binding affinities in the correct order.  相似文献   
973.
N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum’s acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein.  相似文献   
974.
975.
Hydrogen bond pairs involving the chromophore indole have been extensively studied in the gas phase. Here, we report high resolution electronic spectroscopy experiments on the indole-NH(3) hydrogen bond pair in the absence and presence of an electric field. The S(1)-S(0) origin band of this complex recorded in zero field at high resolution reveals two overlapping spectra; a consequence of NH(3) hindered internal rotation. The barrier to internal rotation is predicted by theory to be less than 20 cm(-1) in the ground state, therefore requiring a non-rigid rotor Hamiltonian to interpret the spectra. Conducting the experiment in the presence of an applied electric field further perturbs the already congested spectrum of the complex, but makes possible the measurement of the permanent electric dipole moments in its S(0) and S(1) states. These values reveal significant changes in electron distribution that arise from hydrogen bonding effects.  相似文献   
976.
Resonance Raman spectra of poly(2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) and small molecule acceptor blend charge transfer (CT) complexes reveal long and detailed progressions of overtone and combination bands. These features are sensitive to the specific MDMO-PPV/acceptor interactions and enable quantitative calculations of vibrational mode specific displacements of the polymer CT complex.  相似文献   
977.
In conjunction with environmentally benign ionic liquid electrolytes, vertically-aligned carbon nanotubes (VA-CNTs) sheathed with and without a coaxial layer of vanadium oxide (V(2)O(5)) were used as both cathode and anode, respectively, to develop high-performance and high-safety lithium-ion batteries. The VA-CNT anode and V(2)O(5)-VA-CNT cathode showed a high capacity (600 mAh g(-1) and 368 mAh g(-1), respectively) with a high rate capability. This led to potential to achieve a high energy density (297 Wh kg(-1)) and power density (12 kW kg(-1)) for the prototype batteries to significantly outperform the current state-of-the-art Li-ion batteries.  相似文献   
978.
Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM) was used to characterize the local chemical environment at and around the platinum particles in the membrane (PTIM) which form in operationally tested (end-of-life, EOL) catalyst coated membranes (CCMs) of polymer electrolyte membrane fuel cells (PEM-FC). The band of metallic Pt particles in operationally tested CCM membranes was imaged using transmission electron microscopy (TEM). The cathode catalyst layer in the beginning-of-life (BOL) CCMs was fabricated using commercially available catalysts created from Pt precursors with and without nitrogen containing ligands. The surface composition of these catalyst powders was measured by X-ray Photoelectron Spectroscopy (XPS). The local chemical environment of the PTIM in EOL CCMs was found to be directly related to the Pt precursor used in CCM fabrication. STXM chemical mapping at the N 1s edge revealed a characteristic spectrum at and around the dendritic Pt particles in CCMs fabricated with nitrogen containing Pt-precursors. This N 1s spectrum was identical to that of the cathode and different from the membrane. For CCM samples fabricated without nitrogen containing Pt-precursors the N 1s spectrum at the Pt particles was indistinguishable from that of the adjacent membrane. We interpret these observations to indicate that nitrogenous ligands in the nitrogen containing precursors, or decomposition product(s) from that source, are transported together with the dissolved Pt from the cathode into the membrane as a result of the catalyst degradation process. This places constraints on possible mechanisms for the PTIM band formation process.  相似文献   
979.
Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos?θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.  相似文献   
980.
At low capillary number, drop formation in a T-junction is dominated by interfacial effects: as the dispersed fluid flows into the drop maker nozzle, it blocks the path of the continuous fluid; this leads to a pressure rise in the continuous fluid that, in turn, squeezes on the dispersed fluid, inducing pinch-off of a drop. While the resulting drop volume predicted by this "squeezing" mechanism has been validated for a range of systems, as of yet, the pressure rise responsible for the actual pinch-off has not been observed experimentally. This is due to the challenge of measuring the pressures in a T-junction with the requisite speed, accuracy, and localization. Here, we present an empirical study of the pressures in a T-junction during drop formation. Using Laplace sensors, pressure probes we have developed, we confirm the central ideas of the squeezing mechanism; however, we also uncover other findings, including that the pressure of the dispersed fluid is not constant but rather oscillates in anti-phase with that of the continuous fluid. In addition, even at the highest capillary number for which monodisperse drops can be formed, pressure oscillations persist, indicating that drop formation in confined geometries does not transition to an entirely shear-driven mechanism, but to a mechanism combining squeezing and shearing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号