首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1794篇
  免费   263篇
  国内免费   260篇
化学   447篇
晶体学   12篇
力学   115篇
综合类   22篇
数学   143篇
物理学   410篇
无线电   1168篇
  2024年   16篇
  2023年   63篇
  2022年   99篇
  2021年   92篇
  2020年   70篇
  2019年   84篇
  2018年   53篇
  2017年   34篇
  2016年   59篇
  2015年   59篇
  2014年   90篇
  2013年   83篇
  2012年   68篇
  2011年   57篇
  2010年   70篇
  2009年   87篇
  2008年   64篇
  2007年   92篇
  2006年   92篇
  2005年   89篇
  2004年   65篇
  2003年   71篇
  2002年   45篇
  2001年   43篇
  2000年   55篇
  1999年   70篇
  1998年   54篇
  1997年   66篇
  1996年   68篇
  1995年   54篇
  1994年   43篇
  1993年   42篇
  1992年   43篇
  1991年   35篇
  1990年   24篇
  1989年   30篇
  1988年   13篇
  1987年   11篇
  1986年   11篇
  1985年   7篇
  1984年   15篇
  1983年   4篇
  1982年   3篇
  1981年   7篇
  1980年   4篇
  1960年   1篇
  1958年   1篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
排序方式: 共有2317条查询结果,搜索用时 675 毫秒
101.
通过采用简易温和的水热条件制备导电聚合物@镍铝层状双金属氧化物复合材料(CP@NiAl-LDH),构建电子/离子的高速传输纳米通道,利用SEM和XRD对复合材料结构形貌进行表征。电化学性能测试结果表明,导电聚合物为复合材料提供一定的赝电容,促进电荷的快速转移,使CP@NiAl-LDH的电容性能得以显著提升。PPy@LDH具有最好的电容性能,在1 A·g-1的电流密度下,其比容量高达3 010.3 F·g-1,当电流密度升高到20 A·g-1时,其比电容保持率为73.1%,表现出优异的倍率性能;同时,在10 A·g-1的电流密度下10 000次充放电循环后仍具有88.8%的比容量保持率,具有优异的循环稳定性。这主要归功于NiAl-LDH与导电聚合物之间的协同增强效应。  相似文献   
102.
天然骨形成是一个多模板协同共组装的过程。与单模板自组装相比,双模板介导合成的类骨磷灰石具有与天然骨更加相近的多级结构,在生物矿化研究领域具有更重要的研究意义。本文介绍了双模板介导合成类骨磷灰石的研究进展,探讨了双模板的选择、设计及模板分子间的相互作用,阐述了模板对磷灰石晶体成核的调控机制。通过双模板介导自组装生成的磷灰石材料,以其特有的仿生多级结构和骨诱导效果,在骨缺损修复、齿科修复、表面涂层及药物载体等领域具有广阔的应用前景。  相似文献   
103.
采用共沉淀法合成了ZrO2与Al2O3的不同质量比的ZrO2-Al2O3复合氧化物,并以此为载体通过等体积浸渍法制备了1.5% Pt/ZrO2-Al2O3w/w)催化剂。以C3H6和CO为反应物的催化性能评价显示,在系列催化剂中以Pt/Zr(0.4)-Al2O3催化剂催化氧化活性最为优异,其C3H6和CO的起燃温度(T50)小于125℃,完全转化温度(T90)小于150℃。采用XRD、低温N2吸附、H2-TPR、CO脉冲吸附等分析表征技术探索了催化剂物相结构、比表面积、颗粒尺寸等对催化活性的影响规律。结果发现,ZrO2-Al2O3复合氧化物具有Al2O3材料的介孔织构和大比表面积特性,且产生了AlxZr1-xOy固溶体新物相。适当的ZrO2与Al2O3的质量比,是改善Pt与ZrO2-Al2O3的相互作用强度,促进贵金属Pt的分散,提升Pt/ZrO2-Al2O3催化剂的低温氧化活性的关键。  相似文献   
104.
采用共沉淀法合成了ZrO2与Al2O3的不同质量比的ZrO2-Al2O3复合氧化物,并以此为载体通过等体积浸渍法制备了1.5% Pt/ZrO2-Al2O3w/w)催化剂。以C3H6和CO为反应物的催化性能评价显示,在系列催化剂中以Pt/Zr(0.4)-Al催化剂催化氧化活性最为优异,其C3H6和CO的起燃温度(T50)小于125℃,完全转化温度(T90)小于150℃。采用XRD、低温N2吸附、H2-TPR、CO脉冲吸附等分析表征技术探索了催化剂物相结构、比表面积、颗粒尺寸等对催化活性的影响规律。结果发现,ZrO2-Al2O3复合氧化物具有Al2O3材料的介孔织构和大比表面积特性,且产生了AlxZr1-xOy固溶体新物相。适当的ZrO2与Al2O3的质量比,是改善Pt与ZrO2-Al2O3的相互作用强度,促进贵金属Pt的分散,提升Pt/ZrO2-Al2O3催化剂的低温氧化活性的关键。  相似文献   
105.
采用共沉淀法合成了ZrO_2与Al_2O_3的不同质量比的ZrO_2-Al_2O_3复合氧化物,并以此为载体通过等体积浸渍法制备了1.5%Pt/ZrO_2-Al_2O_3(w/w)催化剂。以C3H6和CO为反应物的催化性能评价显示,在系列催化剂中以Pt/Zr(0.4)-Al催化剂催化氧化活性最为优异,其C3H6和CO的起燃温度(T50)小于125℃,完全转化温度(T90)小于150℃。采用XRD、低温N2吸附、H2-TPR、CO脉冲吸附等分析表征技术探索了催化剂物相结构、比表面积、颗粒尺寸等对催化活性的影响规律。结果发现,ZrO_2-Al_2O_3复合氧化物具有Al_2O_3材料的介孔织构和大比表面积特性,且产生了AlxZr1-xOy固溶体新物相。适当的ZrO_2与Al_2O_3的质量比,是改善Pt与ZrO_2-Al_2O_3的相互作用强度,促进贵金属Pt的分散,提升Pt/ZrO_2-Al_2O_3催化剂的低温氧化活性的关键。  相似文献   
106.
应用动电位扫描,恒流放电等电化学方法研究含铟锌电极的电化学行为.用SEM和EDS观察放电后的Zn-In合金电极表面形貌,初步探讨了不同In含量的锌-铟合金电极在浓KOH溶液中电化学行为及其影响因素.结果表明,与纯锌电极相比,Zn-In合金的电极致钝电流增大,达到钝化的时间缩短,从而明显地提高了该电极的电化学活性.  相似文献   
107.
由于探测器本身固有的特性以及军事上的极限使用要求,红外图像普遍存在目标-背景间对比度较差、目标边缘模糊和噪声较大等特点,采用常规模板匹配、Hu矩方法难以取得理想的检测效果。针对低信噪比红外目标图像,分析了伪Zernike矩的基本原理、不变性和计算方法,提出了低信噪比红外目标检测的伪Zernike矩方法,并比较了模板匹配、Hu矩、伪Zernike矩方法的目标检测效果。理论分析和实验验证了该方法的有效性。  相似文献   
108.
近年来,片上光子集成技术备受关注并飞速发展,但在光纤与芯片、芯片与芯片上实现高效、高可靠性的光耦合仍是难题。光栅因其制作简单,位置灵活,对准容差大及可实现片上测试等一系列优点而备受研究者的关注。目前在绝缘体上硅(SOI)平台和绝缘体上铌酸锂(LNOI)平台上已开发出大量的光栅耦合器件,并获得较高的耦合效率和大带宽。该文主要介绍光栅耦合器的工作原理和主要性能指标,阐述了均匀光栅、倾斜光栅、闪耀光栅和切趾光栅耦合的特点及现阶段进展,并对具有代表性的一维光栅性能指标进行了比较。结果表明,分布式布喇格反射镜和金属反射镜可有效地提升光栅耦合效率。此外,该文还介绍了基于LNOI平台的几种光栅耦合器,其可帮助研究者们梳理光栅耦合器的发展历程、研究现状及各耦合器的特点,为未来研究提供一定的参考。  相似文献   
109.
 介绍了利用氢氧混合气体为原料、以四氯化钛为前驱体、气相爆轰制备纳米二氧化钛粉体的方法。利用XRD衍射结果分析证明,产物为金红石相和锐钛矿相的二氧化钛混晶,其晶粒尺度为纳米量级。通过XRD、SEM、TEM分析可以得出,粒子基本为球形,大部分粒子粒径为10~20 nm,也有少量的100 nm左右的粒子产生。分析后发现,反应发生在爆燃转爆轰的过程中和爆轰管中的湍流现象是导致大粒子产生的主要原因。在对在氢过量和氧过量两种状况下,对爆轰所产生的产物的形貌进行了对比,分析发现两种状况产生纳米二氧化钛粉末粒径分布和形貌并没有太大变化。  相似文献   
110.
彭佩瑶  杜月山  韦峻峰 《电声技术》2022,(11):139-141+156
无声语音识别常以表面肌电信号作为研究对象。表面肌电信号的端点检测是影响识别结果的一个重要因素。表面肌电信号与语音信号有类似之处。借助语音端点检测的方法对表面肌电信号进行分割是一种可行的思路。基于此,采用子带谱熵和梅尔倒谱距离作为信号端点检测的判决依据,通过粒子群算法优化支持向量机分类器给出端点检测结果。结果表明,在不同信噪比条件下,该算法有最高的检出率与最低的错误率。对于基于K最近邻(K-Nearest Neighbor,KNN)的无声语音识别任务,识别率达95.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号