首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   10篇
化学   11篇
数学   1篇
无线电   3篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2012年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 375 毫秒
11.
石墨相氮化碳(g-C_3N_4)纳米片因其廉价、易得、无毒等优点而在光催化领域被广泛应用和研究.但单一的g-C_3N_4存在光生电子与空穴易复合等缺陷,而助催化剂的存在可以促进电荷转移,延长载流子寿命,从而提高光催化性能.本文通过合成PtPd双金属合金纳米颗粒作为助催化剂,对g-C_3N_4纳米片光催化剂进行修饰以提高可见光照射下的光催化产氢速率.g-C_3N_4是以尿素为原材料,通过高温热缩聚和热刻蚀的方法合成, PtPd/g-C_3N_4复合光催化剂通过化学还原沉积法合成.对所获得的复合光催化剂进行了XRD测试并将结果与PdPt标准卡片进行了对比,结果表明,各峰的位置都能有较好的对应,说明成功合成了PdPt.采用TEM对PtPd/g-C_3N_4的形貌进行观察,发现g-C_3N_4呈薄片状,且PdPt颗粒较为均匀地分布在其表面.XPS测试发现, PtPd/g-C_3N_4复合样品中Pt和Pd元素的峰值较Pt/g-C_3N_4和Pd/g-C_3N_4均发生0.83eV的偏移,进一步说明合成了PtPd双金属合金纳米颗粒.DRS测试表明, g-C_3N_4的带隙宽度为2.69eV,而PtPd双金属合金纳米颗粒的负载有效地减小了禁带宽度,从而提高了光催化剂对光的利用率.光催化产氢性能实验发现,当g-C_3N_4负载PtPd双金属合金纳米颗粒后,光催化产氢速率大幅度提高,其中负载量为0.2wt%的PtPd/g-C_3N_4复合光催化剂的产氢速率最高,为1600.8μmol g~(–1)h~(–1),是纯g-C_3N_4纳米片的800倍.向光催化体系中添加10gK_2HPO_4后,产氢速率提高到2885.0μmolg~(–1)h~(–1).当二元合金中Pt:Pd比为1:1时, PtPd/g-C_3N_4复合光催化剂上的产氢速率最高,分别是Pt/g-C_3N_4和Pd/g-C_3N_4上的3.6倍和1.5倍.另外,在420nm处量子效率为5.5%.PtPd/g-C_3N_4复合光催化剂还表现出很好的稳定性,能够在完成4次光催化实验循环后仍然保持其良好的光催化活性.对PtPd/g-C_3N_4复合光催化剂进行了一系列光电化学表征.PL结果表明, PtPd/g-C_3N_4复合光催化剂与纯g-C_3N_4相比荧光强度减弱,说明PtPd/g-C_3N_4复合光催化剂有较慢的光生电子-空穴复合速率,这可以更有效地使电荷分离,从而提高光催化活性.根据光催化反应和表征分析结果提出了复合光催化剂上水分解产氢可能的机理,即PtPd/g-C_3N_4之间的协同作用有助于提高复合光催化剂的光催化活性.  相似文献   
12.
针状TiO2锐钛矿晶粒溶胶的制备、结构及形成机理研究   总被引:8,自引:0,他引:8  
The PTA sol was prepared using titanyl sulfate(TiOSO4), peroxide (H2O2) and ammonia (NH3·H2O) as raw materials. The semitransparent, light yellow AS(autoclaved sol) with ultra-fine needle-like anatase crystals was synthesized by autoclaving the PTA sol at 80~100 ℃ for different times. The anatase crystals were needle-like and 80 nm in length, 20~30 nm in diameter. The FTIR, XRD, SEM were used to analyse the chemical structure, properties of the AS and influencing factors during the sol preparation. The mechanism model of the AS formation was established based on the inorganic and crystal structural chemistry. The PTA molecules were decomposed to form Ti4+ under hydrothermal conditions and the Ti4+ were hydrated with water to get [Ti(OH)4(OH2)2]0, a growing units of the anatase crystals. The appearance of the needle-like anatase crystals and the anatase precipitate are also explained in this paper.  相似文献   
13.
硫化镉锌(Zn0.5Cd0.5S)纳米棒因其制备方法简单以及具有良好的光催化活性等优点,在光催化领域得到广泛的研究和应用.单一Zn0.5Cd0.5S存在光生电子与空穴易复合以及光腐蚀等问题,采用助催化剂修饰将有助于电荷分离与迁移,从而提高其光催化性能.本文将PtPd合金作为助催化剂修饰Zn0.5Cd0.5S纳米棒光催化材料,以提高可见光照射下的产氢速率,并对合金助催化剂提高催化活性的机理进行了深入研究.通过简单水热法合成Zn0.5Cd0.5S,采用化学还原沉积法制备PtPd/Zn0.5Cd0.5S复合光催化材料.XRD结果表明,成功合成了Zn0.5Cd0.5S催化剂.TEM结果表明,Zn0.5Cd0.5S呈纳米棒状,测量得到PtPd合金的(111)晶面条纹间距为0.23 nm,说明合金成功负载到硫化镉锌上.XPS结果表明,PtPd/Zn0.5Cd0.5S复合样品中Pt和Pd元素的峰值较Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S均发生了偏移,Pt和Pd元素化学结合环境发生改变,进一步证实合成了PtPd合金.光催化产氢实验结果表明,当Zn0.5Cd0.5S负载PtPd合金以后,光催化产氢速率大幅提升,其中负载量为1.0 wt%的PtPd/Zn0.5Cd0.5S复合光催化材料的产氢速率最快,达到9.689 mmol·g-1·h-1,分别是纯Zn0.5Cd0.5S,Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S的9.5,3.6和1.7倍.为了探究PtPd合金性能优于Pt的原因,本文结合化学反应热力学(DFT理论计算)和动力学(光致发光光谱、光电流响应、电化学阻抗谱和表面光电压谱)手段进行了详细研究.结果 表明,PtPd二元贵金属合金具有与Pt相近的氢活性物种吸附能和d带中心,可以大大加速电荷转移,促进电荷分离,降低H2生成的活化能.虽然Pt在热力学上有利于光催化产氢,但从催化反应动力学结果可知,PtPd合金在动力学上更有利于产氢,这与光催化产氢结果一致,即PtPd/Zn0.5Cd0.5S复合材料催化活性高于Pt/Zn0.5Cd0.5S.综上,本文研究结果可为其他金属合金助催化剂的研究提供新思路.  相似文献   
14.
随着化石燃料快速消耗和环境污染日益严峻,高效光催化产氢技术作为最有前景的绿色能源技术之一而备受关注.作为典型的2D纳米片,g-C3N4具有很多适合应用在光催化领域的特性,如可见光效应、大比表面积和环境友好等,但单一g-C3N4的载流子复合率高,光催化性能不佳.研究者尝试负载贵金属(如Pt,Ag,Au等),利用贵金属功函数较高,可以快速捕获g-C3N4表面的光生电子,从而有效抑制光生载流子的复合;但其成本较高,限制了该技术的产业化.目前类金属材料(MoO2,NbO2,WO2等)不仅表现出类似贵金属的特性,且价格低廉,有望替代贵金属.因此,引入类金属助催化剂是实现高载流子浓度和宽光谱照射下强光子吸收的好方法.本文设计并制备了类金属WO2/g-C3N4纳米复合物,其表现出了较好的光催化性能:在可见光照射2h,4 wt%WO...  相似文献   
15.
自从国际社会提出“碳达峰、碳中和”目标以来,人们越来越意识到节约资源、保护环境、开发新能源的必要性.氢能(H2)作为最具竞争力的清洁能源之一,引起了研究人员的广泛关注.电化学全解水被认为是一种利用风能和太阳能产生氢气的有效技术,其主要由两个半反应组成:析氧反应(OER)和析氢反应(HER).然而,在实际工业化生产过程中阳极反应动力学OER慢,能量转换效率低,阴极反应稳定性差,导致经济效益不理想,因此,急需开发和探索耐久高效的电催化剂.过渡金属硫化物因具有独特的结构特征、丰富的活性位点和可调控的电子性质和组成,而被广泛用于电化学全解水制氢.本文综述了过渡金属硫化物的合成方法,一般包括:水热(溶剂热)法、电化学沉积法、液相剥离法、化学气相沉积法和球磨法,并概述了不同方法的基本概念、合成步骤以及优缺点.总结了近年用于电催化领域中典型单一硫化物(包括MoS2,WS2,Co3S4,Ni3S2等)材料的合成方法和机理,明确了S元素在整个电催化过程...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号