首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14719篇
  免费   2805篇
  国内免费   3190篇
化学   4491篇
晶体学   179篇
力学   640篇
综合类   338篇
数学   1495篇
物理学   4258篇
无线电   9313篇
  2024年   123篇
  2023年   427篇
  2022年   571篇
  2021年   416篇
  2020年   320篇
  2019年   400篇
  2018年   348篇
  2017年   381篇
  2016年   409篇
  2015年   451篇
  2014年   978篇
  2013年   657篇
  2012年   684篇
  2011年   686篇
  2010年   679篇
  2009年   743篇
  2008年   735篇
  2007年   803篇
  2006年   868篇
  2005年   811篇
  2004年   738篇
  2003年   645篇
  2002年   503篇
  2001年   584篇
  2000年   586篇
  1999年   575篇
  1998年   522篇
  1997年   571篇
  1996年   512篇
  1995年   470篇
  1994年   469篇
  1993年   407篇
  1992年   440篇
  1991年   416篇
  1990年   341篇
  1989年   293篇
  1988年   149篇
  1987年   160篇
  1986年   149篇
  1985年   127篇
  1984年   128篇
  1983年   104篇
  1982年   84篇
  1981年   56篇
  1980年   42篇
  1979年   28篇
  1978年   17篇
  1965年   10篇
  1958年   10篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
全 -( 2 ,6-二 -O-异丁基 ) -β-环糊精 ( DOB-β-CD)对固定于增塑 PVC膜中的 meso-四 ( 4-甲氧基苯基 )卟啉( TMOPP)有明显的荧光增强效应 ,且该荧光可被溶液中的二氧化碳可逆猝灭 .本文据此研制了一种可用于测定水溶液中二氧化碳含量 ,即 [H2 CO3]浓度的荧光敏感膜 .研究了最佳膜的组成 .经过组成优化的敏感膜测定 [H2 CO3]浓度的范围为 4 .75× 1 0 - 7~ 3.9× 1 0 - 5 mol/L.该传感器响应迅速、重现性好 ,常见的离子无明显干扰 .  相似文献   
942.
甲醛光催化氧化的反应机理   总被引:49,自引:0,他引:49  
采用程序升温脱附(TPD), 电子自旋共振(ESR)及自旋捕获 电子自旋共振(ST ESR)等物理方法对甲醛光催化氧化过程中,反应物的吸附状态、自由基中间物种及反应机理 进行了研究.结果表明,在光催化氧化空气中微量甲醛的反应条件下,吸附在催化剂表面的空 气中的氧气被光生电子还原为•O-2,微量水被空穴氧化为•OH.二者为甲醛的深度氧化提供了高活性的氧化剂.甲醛是通过中间产物甲酸而氧化为终点 产物二氧化碳的.  相似文献   
943.
采用改进的Polyol合成法,以PEO-PPO-PEO为表面活性剂制备了链霉亲和素-异硫氰酸荧光素偶联的Fe3O4/Au纳米粒子;利用透射电镜和X射线衍射仪分析证实了Fe3O4/Au的核壳型纳米结构,确定了其粒径和分布;采用紫外-可见吸收光谱仪和荧光光谱仪测定了所制备的纳米粒子的光学活性和荧光特性,并采用振动样品磁强计(VSM)测量了其磁化率.结果表明,所制备的Fe3O4/Au纳米粒子具有光学活性和荧光特性,以及优异的磁性.  相似文献   
944.
氨基甲酸酯类化合物的合成进展   总被引:1,自引:0,他引:1  
作为一类重要的精细化学品,氨基甲酸酯类化合物在农药、医药及有机合成等领域有着广泛的应用。本文介绍了氨基甲酸酯类化合物的主要合成方法,重点阐述了光气及其衍生物法、羰基化法、二氧化碳法、脲类化合物醇解法、霍夫曼重排法等一系列合成途径,并对各合成方法进行了分析评价。指出硒催化硝基化合物及胺等含氮化合物与醇在一氧化碳存在下经羰基化反应来合成氨基甲酸酯类化合物的方法具有较好的发展前景。  相似文献   
945.
采用水热法合成纯硅介孔分子筛Si-MCM-41, 并用浸渍法将磷钨酸(PWA)负载到介孔分子筛Si-MCM-41上, 制得了磷钨酸负载量不同的催化剂x%PWA/MCM-41. 利用XRD, FT-IR, Py-IR, BET, TEM对载体和催化剂进行分析. 结果表明, 负载后的PWA颗粒粒径明显减小, 粒径约为10个纳米, PWA在载体表面实现了均匀分布, 通过叔丁醇和乙醇在高压反应釜内生成乙基叔丁基醚的反应测试催化剂的催化性能. 结果表明, 负载型催化剂和纯PWA相比, 前者使叔丁醇(TBA)的转化率、ETBE的选择性有很大提高, 当磷钨酸负载量为30%时TBA的转化率最大. 最优的催化剂制备及反应条件是: 载体550 ℃煅烧脱模, PWA负载量为30%, 催化剂煅烧温度为300 ℃, 醚化反应温度为120 ℃, 乙醇与叔丁醇的摩尔比为2∶ 1, 催化剂的用量为1.4 g.  相似文献   
946.
用海藻酸钠为致孔剂,在NaCl水溶液中制备了多孔聚(N-异丙基丙烯酰胺)(PNIPAAm)水凝胶,分别用扫描电镜(SEM)和小角X光散射(SAXS)对PNIPAAm水凝胶的多孔结构进行了表征.结果发现,PNIPAAm水凝胶网络中的孔洞相互贯通,随着反应介质中NaCl浓度的增加,孔洞尺寸逐渐增大,孔洞排列越来越有序.相应地,PNIPAAm水凝胶的消溶胀速率随着反应介质中NaCl浓度的增加而提高.当NaCl浓度为0.6 mol/L时制备的PNIPAAm水凝胶,从室温处于平衡溶胀状态快速转移到45℃水介质中,1 min后凝胶的水保留率不足15%,4 min后消溶胀就达到平衡状态.  相似文献   
947.
以乙酸锌和Se粉为原料,环己酮为溶剂,于180 ℃反应24 h制得黄色纳米球ZnSe,其结构和性能经XRD,SEM及TEM表征.  相似文献   
948.
构建了基于多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)和铂纳米颗粒(Pt-nano)的电流型L-乳酸生物传感器。将Sol-gel膜覆盖在L-乳酸氧化酶(L-lactate oxidase,LOD)和MWCNTs/Pt-nano修饰的电极表面。实验结果表明:传感器的最佳工作条件为:检测电压0.5V;缓冲液pH6.4;检测温度25℃。此传感器的响应时间为5s,灵敏度是6.36μA/(mmol/L)。连续检测4星期其活性仍保持90%,线性范围为0.2~2.0mmol/L,且抗干扰能力强。在实际血样的检测中,此传感器与传统的分光光度法具有很好的一致性。  相似文献   
949.
全二维气相色谱(GC×GC)是20世纪90年代发展起来的具有高分辨率、高灵敏度、高峰容量等优势的分离技术,在我国将其用于大气挥发性有机物(VOCs)研究方面才刚刚起步.本文将GC-GC与氢火焰离子化检测器(FID)联用,构建了用于测量大气有机物的热脱附-全二维气相色谱-氢火焰离子化分析系统(TD-GC×GC-FID).采用HP-5MS和HP-INNOWAX色谱柱,建立了C5-C15大气有机物分析方法,实现了一次分析过程同时分离非甲烷烃(NMHCs)、含氧挥发性有机物(OVOCs)和卤代烃等多种组分.利用标准物质和四级杆质谱(qMS)进行定性,外标法结合FID质量校正因子定量.目标物在GC-GC谱图中第一和第二维保留时间变化分别小于0.6s和0.02s,峰体积平均相对标准偏差为14.3%,其中烷烃和芳香烃为4.5%.标准曲线r2均值大于0.99,平均检出限为6.04ng,平均回收率为111%.利用该方法检测到2010年1月北京市区大气中400多种有机物(信噪比大于50),鉴定了其中的103种物质,包括烷烃、烯烃、芳香烃、卤代烃、醛、酮、酯、醇和醚等.所测定有机物平均总浓度为51.3×10-9V/V,其中OVOCs约占51%,芳香烃约占30%,烷烃约占15%,卤代烃和烯烃分别占3%和1%.平均浓度最高的前3个组分是乙醇(9.84×10-9V/V)、丙酮(6.72×10-9V/V)和甲苯(3.48×10-9V/V).  相似文献   
950.
通过第一性原理计算,优化了铁磁性过渡离子掺杂的纤锌矿相硫化锌Fm0.125Zn0.875S(Fm=Fe、Co、Ni)的几何结构,计算了其电子结构,分析了其半金属性及其微观机制。结果表明:对不同的铁磁性杂质离子,Fm0.125Zn0.875S在费米面处的自旋极化率均为-100%,具有半金属性,是潜在的优质自旋注入材料。Fm0.125Zn0.875S具有较宽的自旋带隙,从而具有较高的居里温度和广泛的应用前景。Fe0.125Zn0.875S、Co0.125Zn0.875S和Ni0.125Zn0.875S的2×2×1超胞的磁矩分别为3.96μB、2.90μB和2.00μB,主要来自于铁磁性过渡离子Fe、Co和Ni离子。这3种离子的电子结构分别为eg2↑eg1↓t2g3↑,eg2↑eg2↓t2g3↑和eg2↑eg2↓t2g3↑t2g1↓。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号