首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10183篇
  免费   317篇
  国内免费   18篇
化学   5992篇
晶体学   40篇
力学   383篇
数学   1562篇
物理学   2034篇
无线电   507篇
  2023年   62篇
  2022年   69篇
  2021年   105篇
  2020年   132篇
  2019年   122篇
  2018年   180篇
  2017年   109篇
  2016年   242篇
  2015年   296篇
  2014年   275篇
  2013年   605篇
  2012年   627篇
  2011年   618篇
  2010年   408篇
  2009年   327篇
  2008年   552篇
  2007年   549篇
  2006年   512篇
  2005年   450篇
  2004年   398篇
  2003年   349篇
  2002年   326篇
  2001年   179篇
  2000年   190篇
  1999年   102篇
  1998年   136篇
  1997年   113篇
  1996年   133篇
  1995年   74篇
  1994年   98篇
  1993年   77篇
  1992年   81篇
  1991年   74篇
  1990年   65篇
  1989年   62篇
  1988年   85篇
  1987年   53篇
  1985年   77篇
  1984年   94篇
  1983年   60篇
  1982年   73篇
  1981年   72篇
  1980年   61篇
  1979年   69篇
  1978年   76篇
  1977年   78篇
  1976年   102篇
  1975年   80篇
  1974年   77篇
  1973年   95篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
842.
Integrative sol–gel chemistry based strategies allow, through the strong coupling between materials chemistry and advanced processing, the fabrication of functional inorganic and hybrid materials. The following article will highlight some of the main accomplishments performed during the last years in the design of nano- and multi-scale structured materials shaped as thin films, powders and monoliths with additional functionalities and outstanding properties in several fields of application such as optics, catalysis and nanomedicine. In particular we discuss the key role played by the adapted liquid processing of sol–gel based solution. We will describe some technologies (including dip coating, spray drying, droplet-microfluidics, ink-jet and foaming) in which a high degree of control in term of liquid shaping/evaporation/manipulation is required in order to achieve specific functionalities.  相似文献   
843.
POCIS (polar organic chemical integrative samplers) are increasingly used for sampling polar compounds. Although very efficient for a wide range of pollutants, the classic configuration of the device has a number of limitations, in particular for the sampling of highly polar analytes and hydrophobic compounds. This study presents a new version of the POCIS passive sampler which uses a highly porous Nylon membrane of 30 μm pore size, enabling the sampling of hydrophobic pollutants and improving the accumulation rate of other pollutants. This newly designed tool and the classic POCIS were both tested during a laboratory experiment to evaluate the accumulation kinetics of a selection of pesticides and pharmaceuticals. The observed results show unexpected accumulation kinetics for the new version of POCIS. To explain the data, the use of an intraparticulate diffusion model was required, which also enabled us to propose another explanation of the burst effect observed with the classic POCIS, primarily related to the potential wetting of the device as the first step in the accumulation of compounds.
Figure
Picture of classical and nylon version of POCIS  相似文献   
844.
845.
846.
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 ( 1 : [La2(pop)2(acac)4(CH3OH)], 2 : [Dy2(pop)(acac)5]) are synthesized from the 2‐hydroxyimino‐N‐[1‐(2‐pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3 , 4 , and 5 ( 3 : [Dy2(naphthsaoH)2(acac)4H(OH)]?0.85 CH3CN?1.58 H2O; 4 : [Tb2(naphthsaoH)2(acac)4H(OH)]?0.52 CH3CN?1.71 H2O; 5 : [La6(CO3)2(naphthsao)5 (naphthsaoH)0.5(acac)8(CO3)0.5(CH3OH)2.76H5.5(H2O)1.24]?2.39 CH3CN?0.12 H2O) contain 1‐(1‐hydroxynaphthalen‐2‐yl)‐ethanone oxime (naphthsaoH2). In 1 – 4 , dinuclear [Ln2] complexes crystallize, whereas hexanuclear LaIII complex 5 is formed after fixation of atmospheric carbon dioxide. DyIII‐based complexes 2 and 3 display single‐molecule‐magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy3+ ions.  相似文献   
847.
This paper describes the synthesis of triptycene‐based building blocks that are able to interact through hydrogen bonds to form one‐dimensional self‐assembled motifs on surfaces. We designed 9,10‐diethynyltriptycene derivatives functionalized at the ethynyl end groups by a variety of hydrogen‐bonding groups for homomolecular recognition and complementary building blocks for heteromolecular recognition. We also present the synthesis of bis‐ and trisethynyltriptycenes with terminal alkyne functional groups available for on‐surface azide–alkyne cycloaddition reaction to expand the potential of the triptycene building block.  相似文献   
848.
Phytochemical investigation of the leaves of Phragmanthera capitata collected on Cassia spectabilis tree led to the isolation of two natural lactones, rel‐(1R,5S,7S)‐7‐[2‐(4‐hydroxyphenyl)ethyl]‐2,6‐dioxabicyclo[3.3.1]nonan‐3‐one ( 1 ) and 4‐{2‐[rel‐(1R,3R,5S)‐7‐oxo‐2,6‐dioxabicyclo[3.3.1]non‐3‐yl]ethyl}phenyl 3,4,5‐trihydroxybenzoate ( 2 ) together with the known compounds betulinic acid ( 3 ), dodoneine ( 4 ), quercetin 3‐Oα‐L ‐rhamnopyranoside ( 5 ), quercetin 3‐Oα‐L ‐arabinofuranoside ( 6 ), quercetin ( 7 ), betulin ( 8 ), lupeol ( 9 ), and sitosterol ( 10 ). Their structures were established by means of modern spectroscopic techniques, and the relative configuration of compound 1 was confirmed by X‐ray analysis. Compounds 1 and 2 were tested in vitro for their antiplasmodial activity against the Plasmodium falciparum chloroquine sensitive‐strains NF54 and 3D7. Compound 2 exhibited good antiplasmodial activity against both strains with IC50 of 2.4 and 4.9 μM , respectively, while compound 1 was inactive.  相似文献   
849.
Transition‐metal complexes containing stimuli‐responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor–acceptor azobenzene derivatives that possess bipyridine groups connected to a 4‐dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD‐DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.  相似文献   
850.
Metal complexes are increasingly explored as imaging probes in amyloid peptide related pathologies. We report the first detailed study on the mechanism of interaction between a metal complex and both the monomer and the aggregated form of Aβ1–40 peptide. We have studied lanthanide(III) chelates of two PiB‐derivative ligands (PiB=Pittsburgh compound B), L1 and L2, differing in the length of the spacer between the metal‐complexing DO3A macrocycle (DO3A= 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid) and the peptide‐recognition PiB moiety. Surface plasmon resonance (SPR) and saturation transfer difference (STD) NMR spectroscopy revealed that they both bind to aggregated Aβ1–40 (KD=67–160 μM ), primarily through the benzothiazole unit. HSQC NMR spectroscopy on the 15N‐labeled, monomer Aβ1–40 peptide indicates nonsignificant interaction with monomeric Aβ. Time‐dependent circular dichroism (CD), dynamic light scattering (DLS), and TEM investigations of the secondary structure and of the aggregation of Aβ1–40 in the presence of increasing amounts of the metal complexes provide coherent data showing that, despite their structural similarity, the two complexes affect Aβ fibril formation distinctly. Whereas GdL1, at higher concentrations, stabilizes β‐sheets, GdL2 prevents aggregation by promoting α‐helical structures. These results give insight into the behavior of amyloid‐targeted metal complexes in general and contribute to a more rational design of metal‐based diagnostic and therapeutic agents for amyloid‐ associated pathologies.  相似文献   
[首页] « 上一页 [80] [81] [82] [83] [84] 85 [86] [87] [88] [89] [90] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号