首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   11篇
  国内免费   2篇
化学   111篇
晶体学   2篇
力学   7篇
数学   17篇
物理学   83篇
无线电   60篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   12篇
  2015年   3篇
  2014年   10篇
  2013年   33篇
  2012年   7篇
  2011年   15篇
  2010年   7篇
  2009年   8篇
  2008年   21篇
  2007年   16篇
  2006年   7篇
  2005年   17篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   11篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1945年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
1.
2.
Many seemingly simple questions that individual users face in their daily lives may actually require substantial number of computing resources to identify the right answers. For example, a user may want to determine the right thermostat settings for different rooms of a house based on a tolerance range such that the energy consumption and costs can be maximally reduced while still offering comfortable temperatures in the house. Such answers can be determined through simulations. However, some simulation models as in this example are stochastic, which require the execution of a large number of simulation tasks and aggregation of results to ascertain if the outcomes lie within specified confidence intervals. Some other simulation models, such as the study of traffic conditions using simulations may need multiple instances to be executed for a number of different parameters. Cloud computing has opened up new avenues for individuals and organizations with limited resources to obtain answers to problems that hitherto required expensive and computationally-intensive resources. This paper presents SIMaaS, which is a cloud-based Simulation-as-a-Service to address these challenges. We demonstrate how lightweight solutions using Linux containers (e.g., Docker) are better suited to support such services instead of heavyweight hypervisor-based solutions, which are shown to incur substantial overhead in provisioning virtual machines on-demand. Empirical results validating our claims are presented in the context of two case studies.  相似文献   
3.
4.

CO2 and steam/CO2 electroreduction to CO and methane in solid oxide electrolytic cells (SOEC) has gained major attention in the past few years. This work evaluates, for the very first time, the performance of two different ZnO–Ag cathodes: one where ZnO nanopowder was mixed with Ag powder for preparing the cathode ink (ZnOmix–Ag cathode) and the other one where Ag cathode was infiltrated with a zinc nitrate solution (ZnOinf –Ag cathode). ZnOmix–Ag cathode had a better distribution of ZnO particles throughout the cathode, resulting in almost double CO generation while electrolysing both dry CO2 and H2/CO2 (4:1 v/v). A maximum overall CO2 conversion of 48% (in H2/CO2) at 1.7 V and 700 °C clearly indicated that as low as 5 wt% zinc loading is capable of CO2 electroreduction. It was further revealed that for ZnOinf –Ag cathode, most of CO generation took place through RWGS reaction, but for ZnOmix–Ag cathode, it was the synergistic effect of both RWGS reaction and CO2 electrolysis. Although ZnOinf –Ag cathode produced trace amount of methane at higher voltages, with ZnOmix–Ag cathode, there was absolutely no methane. This seems to be due to strong electronic interaction between Zn and Ag that might have suppressed the catalytic activity of the cathode towards methanation.

  相似文献   
5.
In the present work, interactions between common media components and fermentation conditions were explored to come up with a simple media recipe for extracellular β-glucosidase (Dβ-gl) synthesis from Debaryomyces pseudopolymorphus to substitute cellobiose, which is currently used as a sole carbon source. Taguchi L25 orthogonal array design was used to screen factors influencing Dβ-gl synthesis (carbon, organic nitrogen, inorganic nitrogen, trace elements, inoculum volume, and fermentation time). A significant influence of xylose, peptone, and potassium nitrate as carbon, organic nitrogen, and inorganic nitrogen sources, respectively, on Dβ-gl synthesis was identified by Taguchi. These factors were further optimized using central composite rotatable design (CCRD) of response surface methodology (RSM). The results showed that in the range studied, potassium nitrate had insignificant effect while xylose, peptone, and xylose-peptone interaction had a significant effect on Dβ-gl synthesis. Peptone/xylose ratio of 1.33 was found to be an important parameter for inducing Dβ-gl synthesis. The regression coefficient (R 2) of 0.915 and P value of <0.0003 for the model indicated that it was highly significant. The maximum activity obtained after RSM (32.2 U/ml) was comparable with that obtained (68.8 U/ml) when cellobiose (20 g/l) was used as a sole carbon source. Considering the cost difference between xylose and cellobiose, a 16-fold cost reduction could be obtained for equivalent Dβ-gl yield. Fed-batch fermentations were carried out wherein peptone/xylose ratio of 1.33 was maintained and continuous Dβ-gl synthesis was observed.  相似文献   
6.
7.
[reaction: see text]. N-Benzhydryl aziridines-2-carboxylates can be readily obtained from the catalytic asymmetric aziridination reaction from N-benzhydrylimines and ethyl diazoacetate. Cleavage of the benzhydryl group by hydrogenolysis leads to ring opening when R = aryl. Surprisingly, ozone will selectively oxidize the benhydryl group in these aziridines even when R is an aryl group. This allows for a new deprotection strategy for these aziridines whose generality is explored.  相似文献   
8.
We report on the design and development of a novel label-free DNA sensor based on conducting poly(3,4-ethylenedioxythiophene) for the direct detection and quantification of target ssDNA.  相似文献   
9.
The mechanism involved in the spectacular effects from cavitation phenomenon is very complex and there have been several proposed theories to explain the observed results. The experimental as well as the visual observations indicate that a single collapsing cavity is also influenced by the dynamics of the surrounding cavities, which are very near to the collapsing cavity. The observed effects and erosion patterns cannot be explained properly on the basis of a single cavity collapse and hence in this study a cavity cluster (group of cavities) has been considered to understand the mechanism of cavitational effects. The effect of intensity, frequency of ultrasound, initial size of the cluster and the fraction of energy transferred from the collapsing cavities to the surrounding cavities on the cavitational intensity quantified in terms of the pressure pulse generated at the collapse of cavities as well as the active zone of cavitation has been investigated using bubble/cavity dynamics equations, numerically. On the basis of the trends obtained, empirical correlations estimating the collapse pressure and active volume of cavitation, have been developed.  相似文献   
10.
Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号