首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14643篇
  免费   301篇
  国内免费   72篇
化学   8358篇
晶体学   104篇
力学   503篇
数学   2022篇
物理学   4029篇
  2022年   98篇
  2021年   115篇
  2020年   167篇
  2019年   114篇
  2018年   122篇
  2017年   92篇
  2016年   201篇
  2015年   214篇
  2014年   252篇
  2013年   532篇
  2012年   576篇
  2011年   737篇
  2010年   411篇
  2009年   366篇
  2008年   622篇
  2007年   686篇
  2006年   679篇
  2005年   709篇
  2004年   573篇
  2003年   454篇
  2002年   423篇
  2001年   411篇
  2000年   379篇
  1999年   223篇
  1998年   198篇
  1997年   192篇
  1996年   252篇
  1995年   231篇
  1994年   215篇
  1993年   255篇
  1992年   234篇
  1991年   217篇
  1990年   173篇
  1989年   180篇
  1988年   206篇
  1987年   188篇
  1986年   144篇
  1985年   194篇
  1984年   188篇
  1983年   138篇
  1982年   175篇
  1981年   155篇
  1980年   155篇
  1979年   152篇
  1978年   157篇
  1977年   120篇
  1976年   136篇
  1975年   104篇
  1974年   119篇
  1973年   97篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
901.
Monopolar surfaces   总被引:13,自引:0,他引:13  
Following the development of a methodology for determining the apolar components as well as the electron donor and the electron acceptor parameters of the surface tension of polar surfaces, surfaces of a number of quite common materials were found to manifest virtually only electron donor properties and no, or hardly, any electron acceptor properties. Such materials may be called monopolar; they can strongly interact with bipolar materials (e.g., with polar liquids such as water); but one single polar parameter of a monopolar material cannot contribute to its energy of cohesion. Monopolar materials manifesting only electron acceptor properties also may exist, but they do not appear to occur in as great an abundance. Among the electron donor monopolar materials are: polymethylmethacrylate, polyvinylalcohol, polyethyleneglycol, proteins, many polysaccharides, phospholipids, nonionic surfactants, cellulose esters, etc. Strongly monopolar materials of the same sign repel each other when immersed or dissolved in water or other polar liquids. The interfacial tension between strongly monopolar surfaces and water has a negative value. This leads to a tendency for water to penetrate between facing surfaces of a monopolar substance and hence, to repulsion between the molecules or particles of such a monopolar material, when immersed in water, and thus to pronounced solubility or dispersibility. Monopolar repulsion energies can far outweigh Lifshitz-van der Waals attractions as well as electrostatic and "steric" repulsions. In aqueous systems the commonly observed stabilization effects, which usually are ascribed to "steric" stabilization, may in many instances be attributed to monopolar repulsion between nonionic stabilizing molecules. The repulsion between monopolar molecules of the same sign can also lead to phase separation in aqueous solutions (or suspensions), where not only two, but multiple phases are possible. Negative interfacial tensions between monopolar surfactants and the brine phase can be the driving force for the formation of microemulsions; such negative interfacial tensions ultimately decay and stabilize at a value very close to zero. Strongly monopolar macromolecules or particles surrounded by oriented water molecules of hydration can still repel each other, albeit to an attenuated degree. This repulsion was earlier perceived as caused by "hydration pressure". A few of the relevant colloid and surface phenomena are reviewed and re-examined in the light of the influence of surface monopolarity on these phenomena.  相似文献   
902.
The Taylor dispersion technique is used to measure the ternary mutual diffusion coefficients of aqueous nonelectrolyte solutions at 25°C. The dispersion of the injected solutes is recorded by a differential refractometer and an ultraviolet-visible detector. The diffusion coefficients are calculated directly by fitting the theoretical dispersion equations to about six experimental curves simultaneously. If the ternary diffusion effects in the measured dispersion profiles are not confused by the inaccuracy of the experimental method or an unfavorable relative detector sensitivity, the diffusion coefficients are precise. For the system methanol + acetone + water, it is shown that the Taylor dispersion method is unsuitable for the determination of all the diffusion coefficients if the methanol mole fraction is less than 0.45 or the acetone mole fraction if more than 0.001.  相似文献   
903.
A validated method based on solid-phase extraction (SPE) and liquid chromatography-ion trap tandem mass spectrometry (LC-MS/MS) is described for the determination of cocaine (COC) and its principal metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in waste and surface water. Several SPE adsorbents were investigated and the highest recoveries (95.7 +/- 5.5, 91.8 +/- 2.2 and 72.5 +/- 5.3% for COC, BE and EME, respectively) were obtained for OASIS HLB(R) cartridges (6 mL/500 mg) using 100 mL of waste water or 500 mL of surface water. Extracts were analysed by reversed-phase (RP) or hydrophilic interaction (HILIC) LC-MS/MS in positive ion mode with multiple reactions monitoring (MRM); the latter is the first reported application of the HILIC technique for drugs of abuse in water samples. Corresponding deuterated internal standards were used for quantification. The method limits of quantification (LOQs) for COC and BE were 4 and 2 ng L(-1), respectively, when RPLC was used and 1, 0.5 and 20 ng L(-1) for COC, BE and EME, respectively, with the HILIC setup. For COC and BE, the LOQs were below the concentrations measured in real water samples. Stability tests were conducted to establish the optimal conditions for sample storage (pH, temperature and time). The degradation of COC was minimal at -20 degrees C and pH = 2, but it was substantial at +20 degrees C and pH = 6. The validated method was applied to a set of waste and surface water samples collected in Belgium.  相似文献   
904.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   
905.
The ubiquitously expressed mannose‐6‐phosphate receptors (MPRs) are a promising class of receptors for targeted compound delivery into the endolysosomal compartments of a variety of cell types. The development of a synthetic, multivalent, mannose‐6‐phosphate (M6P) glycopeptide‐based MPR ligand is described. The conjugation of this ligand to fluorescent DCG‐04, an activity‐based probe for cysteine cathepsins, enabled fluorescent readout of its receptor‐targeting properties. The resulting M6P‐cluster–BODIPY–DCG‐04 probe was shown to efficiently label cathepsins in cell lysates as well as in live cells. Furthermore, the introduction of the 6‐O‐phosphates leads to a completely altered uptake profile in COS and dendritic cells compared to a mannose‐containing ligand. Competition with mannose‐6‐phosphate abolished all uptake of the probe in COS cells, and we conclude that the mannose‐6‐phosphate cluster targets the MPR and ensures the targeted delivery of cargo bound to the cluster into the endolysosomal pathway.  相似文献   
906.
The development of new energy materials that can be utilized to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks in science today. Solar‐powered catalytic water‐splitting processes can be exploited as a source of electrons and protons to make clean renewable fuels, such as hydrogen, and in the sequestration of CO2 and its conversion into low‐carbon energy carriers. Recently, there have been tremendous efforts to build up a stand‐alone solar‐to‐fuel conversion device, the “artificial leaf”, using light and water as raw materials. An overview of the recent progress in electrochemical and photo‐electrocatalytic water splitting devices is presented, using both molecular water oxidation complexes (WOCs) and nano‐structured assemblies to develop an artificial photosynthetic system.  相似文献   
907.
Ning SB  Song YC  Damme Pv Pv 《Electrophoresis》2002,23(13):2096-2102
An emerging topic in plant biology is whether plant cells display similar elements of programmed cell death (PCD) as animal cells do. We have studied cell death in maize roots exposed to cold stress by using fluorescence microscopy, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL), DNA gel electrophoresis, single cell gel electrophoresis (SCGE), cell electrophoresis, and annexin binding techniques. The results showed that cell death in maize root cells triggered by cold stress was accompanied by a subset of features characteristic of animal PCD such as nuclear condensation and fragmentation, and oligonucleosomal DNA fragmentation. In addition to DNA laddering and TUNEL positivity, a "comet" pattern indicative of DNA breakage appeared as short as after one day of treatment. The maize root cell PCD process was also accompanied by an increase in negative surface charge of the dying cells due to exposure of phosphatiolylserine (PS) from inner to outer membrane. After annexin binding, however, the enhanced electrophoretic mobility (EPM) of the dying cells decreased nearly to normal values. This result suggests that the combination between cell electrophoresis and annexin binding provides a quantitative method for monitoring PS exposure during plant PCD.  相似文献   
908.
Uncertainties of four enzyme-CRMs that have recently been certified in a co-operation between the IRMM and the International Federation for Clinical Chemistry were estimated. Estimation was based on the sum of the uncertainties of characterization, homogeneity and stability. Data from the certification collaborative study were used to estimate laboratory uncertainties, which form the basis for the uncertainty of characterization. Estimations for the uncertainty of homogeneity were derived from classical homogeneity studies. The estimations of uncertainty of stability caused the most difficulties. Realistic uncertainties fitting the needs of customers while being derived from measurement data based on theoretical considerations were obtained. Received: 11 May 2000 / Revised: 21 June 2000 / Accepted: 27 June 2000  相似文献   
909.
These last decades, it has been widely assumed that 18-crown-6-ether (CE) plays a spectator role during the chemical processes occurring in isolated host-guest complexes between peptides or proteins and CE after activation in mass spectrometers. Our present experimental and theoretical results challenge this hypothesis by showing that CE can abstract a proton or a protonated molecule from protonated peptides after activation by collisions in argon or electron capture/transfer. Furthermore, thanks to comparison between experimental and calculated values of collision cross-sections, we demonstrate that CE can change binding site after electron transfer. We also propose detailed mechanisms for these processes.  相似文献   
910.
Although frit-fast atom bombardment (frit-FAB) and continuous-flow FAB mass spectrometry have become standard methods for the analysis of peptides and peptide mixtures, these techniques have not been applied previously to the analysis of oligonucleotides. Mobilephase composition, flow rate, and sample size were optimized for the analysis of oligonucleotides by negative ion frit-FAB mass spectrometry (a type of continuous-flow FAB mass spectrometry). With a mobile phase consisting of methanol/water/triethanolamine (80:20:0.5, v/v/w), flow injection frit-FAB analysis of oligonucleotides showed lower limits of detection compared to standard probe FAB mass spectrometry. For example, in order to obtain a signal-to-noise ratio of 3:1, 38 prnol of d(GTIAAC) were required for frit-FAB mass spectrometry and 62 pmol were required for standard probe FAB mass spectrometry. The largest difference between frit-FAB and standard probe FAB was observed for d(pC)5, for which the limit of detection by frit-FAB was approximately 11-fold lower than by standard FAB mass spectrometry. Adjustment of the mobile phase to pH 7 with trifluoroacetic acid increased the limit of detection (reduced sensitivity) a minimum of sixfold. Equimolar mixtures of two or three oligonucleotides produced deprotonated molecules in identical relative abundances whether analyzed by frit-FAB or standard probe FAB mass spectrometry. Finally, frit-FAB liquid chromatography mass spectrometry was demonstrated by separating mixtures of oligonucleotides on a β -cyclodextrin high-performance liquid chromatography column with a mobile phase containing methanol, water, and triethanolamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号